生物技术进展 ›› 2024, Vol. 14 ›› Issue (4): 529-536.DOI: 10.19586/j.2095-2341.2024.0021
• 进展评述 • 上一篇
贾名扬1(), 王磊1, 陈俊峰2, 张家庆2, 闫祥洲2, 邢宝松2(
), 王璟2(
)
收稿日期:
2024-02-06
接受日期:
2024-05-20
出版日期:
2024-07-25
发布日期:
2024-08-07
通讯作者:
邢宝松,王璟
作者简介:
贾名扬 E-mail: jia1my@163.com
基金资助:
Mingyang JIA1(), Lei WANG1, Junfeng CHEN2, Jiaqing ZHANG2, Xiangzhou YAN2, Baosong XING2(
), Jing WANG2(
)
Received:
2024-02-06
Accepted:
2024-05-20
Online:
2024-07-25
Published:
2024-08-07
Contact:
Baosong XING,Jing WANG
摘要:
CRISPR/Cas9是一种高效、精准的基因编辑技术,在畜禽基因编辑领域已取得了广泛应用。简述了CRISPR/Cas9技术在猪、牛、羊及禽类遗传育种方面的研究进展和应用情况,总结了该技术在育种应用方面所面临的问题,并对其未来发展趋势进行了展望,以期为未来该技术在畜禽育种领域的应用提供参考。
中图分类号:
贾名扬, 王磊, 陈俊峰, 张家庆, 闫祥洲, 邢宝松, 王璟. CRISPR/Cas9基因编辑技术在畜禽育种中的研究进展[J]. 生物技术进展, 2024, 14(4): 529-536.
Mingyang JIA, Lei WANG, Junfeng CHEN, Jiaqing ZHANG, Xiangzhou YAN, Baosong XING, Jing WANG. Research Progress of CRISPR/Cas9 Gene Editing Technology in Livestock and Poultry Breeding[J]. Current Biotechnology, 2024, 14(4): 529-536.
1 | 赵美威,段承俐,刘江.基于类转录激活因子效应物(TALEs)的基因组定点操控技术[J].动物学研究,2013,34(5):509-518. |
ZHAO M W, DUAN C L, LIU J. Transcription activator-like effectors(TALEs)based genome engineering[J]. Zool. Res., 2013, 34(5): 509-518. | |
2 | LAI L, KANG J X, LI R, et al.. Generation of cloned transgenic pigs rich in omega-3 fatty acids[J]. Nat. Biotechnol., 2006, 24(4): 435-436. |
3 | 朱秋宇,胡兰.动物机体中肌肉生长抑制素基因的研究进展[J].现代畜牧兽医,2014(9):51-55. |
ZHU Q Y, HU L. Research progress of Myostatin gene in animal[J]. Mod. J. Anim. Husb. Vet. Med., 2014(9): 51-55. | |
4 | WANG K, OUYANG H, XIE Z, et al.. Efficient generation of myostatin mutations in pigs using the CRISPR/Cas9 system[J/OL]. Sci. Rep., 2015, 5: 16623[2024-05-31]. . |
5 | WANG K, TANG X, XIE Z, et al.. CRISPR/Cas9-mediated knockout of myostatin in Chinese indigenous Erhualian pigs[J]. Transgenic Res., 2017, 26(6): 799-805. |
6 | ZHU X X, ZHAN Q M, WEI Y Y, et al.. CRISPR/Cas9-mediated MSTN disruption accelerates the growth of Chinese Bama pigs[J]. Zuchthygiene, 2020, 55(10): 1314-1327. |
7 | 彭定威,李瑞强,曾武,等.编辑MSTN半胱氨酸节基元促进两广小花猪肌肉生长[J].遗传,2021,43(3):261-270. |
PENG D W, LI R Q, ZENG W, et al.. Editing the cystine knot motif of MSTN enhances muscle development of Liang Guang Small Spotted pigs[J]. Hereditas, 2021, 43(3): 261-270. | |
8 | 王煜,宋瑞高,赵建国,等.碱基编辑器介导的猪IGF2基因高效定点突变[J].中国畜牧兽医,2020,47(11):3427-3435. |
WANG Y, SONG R G, ZHAO J G, et al.. Efficient site-directed mutation of porcine IGF2 gene via base editors[J]. China Anim. Husb. Vet. Med., 2020, 47(11): 3427-3435. | |
9 | XIANG G, REN J, HAI T, et al.. Editing porcine IGF2 regulatory element improved meat production in Chinese Bama pigs[J]. Cell. Mol. Life Sci., 2018, 75(24): 4619-4628. |
10 | WANG H, SHEN L, CHEN J, et al.. Deletion of CD163 exon 7 confers resistance to highly pathogenic porcine reproductive and respiratory viruses on pigs[J]. Int. J. Biol. Sci., 2019, 15(9): 1993-2005. |
11 | BURKARD C, OPRIESSNIG T, MILEHAM A J, et al.. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to porcine reproductive and respiratory syndrome virus 1 infection[J]. J. Virol., 2018, 92(16): 415-418. |
12 | CHEN J, WANG H, BAI J, et al.. Generation of pigs resistant to highly pathogenic-porcine reproductive and respiratory syndrome virus through gene editing of CD163 [J]. Int. J. Biol. Sci., 2019, 15(2): 481-492. |
13 | WANG Y, BI D, QIN G, et al.. Cytosine base editor (hA3A-BE3-NG)-mediated multiple gene editing for pyramid breeding in pigs[J/OL]. Front. Genet., 2020, 11: 592623[2024-05-31]. . |
14 | 赵为民,王慧利,曹少先,等.猪CD163基因的单碱基编辑研究[J].畜牧兽医学报,2022,53(4):1041-1050. |
ZHAO W M, WANG H L, CAO S X, et al.. The study of base editing of porcine CD163 gene[J]. Acta Vet. Zootechnica Sin., 2022, 53(4): 1041-1050. | |
15 | SONG R, WANG Y, ZHENG Q, et al.. One-step base editing in multiple genes by direct embryo injection for pig trait improvement[J]. Sci. China Life Sci., 2022, 65(4): 739-752. |
16 | XU K, ZHOU Y, MU Y, et al.. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance[J/OL]. eLife, 2020, 9: e57132[2024-05-31]. . |
17 | REN J, HAI T, CHEN Y, et al.. Improve meat production and virus resistance by simultaneously editing multiple genes in livestock using Cas12iMax [J]. Sci. China Life Sci., 2024, 67(3): 555-564. |
18 | 王妍鳕,任亭亭,孙跃峰,等.利用CRISPR/Cas9系统构建SBNO2基因敲除细胞系及其功能研究[J].甘肃农业大学学报,2021,56(1):22-28. |
WANG Y X, REN T T, SUN Y F, et al.. Construction of SBNO2 knockout cell lines using CRISPR/Cas9 system and its function evaluation[J]. J. Gansu Agric. Univ., 2021, 56(1): 22-28. | |
19 | 张林,吴金恩,任玫,等. RALY基因敲除PK-15细胞系的构建及对口蹄疫病毒复制的影响[J].中国兽医科学,2023,53(9):1115-1121. |
ZHANG L, WU J N, REN M, et al.. Construction of RALY gene knockout PK-15 cell line and its effect on replication of foot-and-mouth disease virus[J]. Chin. Vet. Sci., 2023, 53(9): 1115-1121. | |
20 | XIE Z, JIAO H, XIAO H, et al.. Generation of pRSAD2 gene knock-in pig via CRISPR/Cas9 technology[J/OL]. Antivir. Res., 2020, 174: 104696[2024-05-31]. . |
21 | QI C, PANG D, YANG K, et al.. Generation of PCBP1-deficient pigs using CRISPR/Cas9-mediated gene editing[J/OL]. iScience, 2022, 25(10): 105268[2024-05-31]. . |
22 | BERG F, GUSTAFSON U, ANDERSSON L. The uncoupling protein 1 gene (UCP1) is disrupted in the pig lineage: a genetic explanation for poor thermoregulation in piglets[J/OL]. PLoS Genet., 2006, 2(8): e129[2024-05-31]. . |
23 | ZHENG Q, LIN J, HUANG J, et al.. Reconstitution of UCP1 using CRISPR/Cas9 in the white adipose tissue of pigs decreases fat deposition and improves thermogenic capacity[J]. Proc. Natl. Acad. Sci. USA, 2017, 114(45): 9474-9482. |
24 | LIANG X, LAN J, XU M, et al.. Impact of KIT editing on coat pigmentation and fresh meat color in Yorkshire pigs[J]. CRISPR J., 2022, 5(6): 825-842. |
25 | 吴珊珊,王学侨,王鑫,等. MSTN基因编辑鲁西牛屠宰性状与肉用品质分析[J].农业生物技术学报,2023,31(1):87-97. |
WU S S, WANG X Q, WANG X, et al.. Analysis of slaughter traits and meat quality of MSTN gene-edited Luxi cattle(Bos taurus)[J]. J. Agric. Biotechnol., 2023, 31(1): 87-97. | |
26 | GIM G M, KWON D H, EOM K H, et al.. Production of MSTN-mutated cattle without exogenous gene integration using CRISPR-Cas9[J/OL]. Biotechnol. J., 2022, 17(7): e2100198[2024-05-31]. . |
27 | CRISPO M, MULET A P, TESSON L, et al.. Efficient generation of myostatin knock-out sheep using CRISPR/Cas9 technology and microinjection into zygotes[J/OL]. PLoS ONE, 2015, 10(8): e0136690[2024-05-31]. . |
28 | WANG X, NIU Y, ZHOU J, et al.. Multiplex gene editing via CRISPR/Cas9 exhibits desirable muscle hypertrophy without detectable off-target effects in sheep[J/OL]. Sci. Rep., 2016, 6: 32271[2024-05-31]. . |
29 | 姚旭东.单碱基编辑哈萨克羊MSTN基因的研究[D].石河子:石河子大学,2021. |
30 | VAL C H, DE OLIVEIRA M C, LACERDA D R, et al.. SOCS2 modulates adipose tissue inflammation and expansion in mice[J/OL]. J. Nutr. Biochem., 2020, 76: 108304[2024-05-31]. . |
31 | ZHOU S, CAI B, HE C, et al.. Programmable base editing of the sheep genome revealed No genome-wide off-target mutations[J/OL]. Front. Genet., 2019, 10: 215[2024-05-31]. . |
32 | SILAEVA Y Y, KUBEKINA M V, BRUTER A V, et al.. Gene editing CRISPR/Cas9 system for producing cows with hypoallergenic milk on the background of a beta-lactoglobulin gene knockout[J/OL]. E3S Web Conf., 2020, 176: 1006[2024-05-31]. . |
33 | ZHOU W, WAN Y, GUO R, et al.. Generation of beta-lactoglobulin knock-out goats using CRISPR/Cas9[J/OL]. PLoS ONE, 2017, 12(10): e0186056[2024-05-31]. . |
34 | TIAN H, LUO J, ZHANG Z, et al.. CRISPR/Cas9-mediated stearoyl-CoA desaturase 1 (SCD1) deficiency affects fatty acid metabolism in goat mammary epithelial cells[J]. J. Agric. Food Chem., 2018, 66(38): 10041-10052. |
35 | TAN D X, MANCHESTER L C, ESTEBAN-ZUBERO E, et al.. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism[J]. Molecules, 2015, 20(10): 18886-18906. |
36 | MA T, TAO J, YANG M, et al.. An AANAT/ASMT transgenic animal model constructed with CRISPR/Cas9 system serving as the mammary gland bioreactor to produce melatonin-enriched milk in sheep[J/OL]. J. Pineal Res., 2017, 63(1): 12406 [2024-05-31]. . |
37 | GAO Y, WU H, WANG Y, et al.. Single Cas9 nickase induced generation of NRAMP1 knockin cattle with reduced off-target effects[J/OL]. Genome Biol., 2017, 18(1): 13[2024-05-31]. . |
38 | WORKMAN A M, HEATON M P, VANDER LEY B L, et al.. First gene-edited calf with reduced susceptibility to a major viral pathogen[J/OL]. PNAS Nexus, 2023, 2(5): pgad125[2024-05-31]. . |
39 | HU S, YANG M, POLEJAEVA I. 360 double knockout of goat myostatin and prion protein gene using clustered regularly interspaced short palindromic repeat CRISPR/Cas9 systems[J/OL]. Reprod. Fertil. Dev., 2015, 27(1): 268[2024-05-31]. . |
40 | MENCHACA A, MULET A P, DOS SANTOS NETO P C, et al.. CRISPR in sheep: a southern perspective[J]. Transgenic Res., 2018, 27(5): 469-470. |
41 | 李冠纬.单碱基基因编辑系统介导的FGF5基因敲除绒山羊的创制与评价[D].杨凌:西北农林科技大学,2020. |
42 | 丁一格.ABEs介导的FecB基因突变滩羊的制备[D].杨凌:西北农林科技大学,2020. |
43 | BHATTACHARYA T K, SHUKLA R, CHATTERJEE R N, et al.. Comparative analysis of silencing expression of myostatin (MSTN) and its two receptors (ACVR2A and ACVR2B) genes affecting growth traits in knock down chicken[J/OL]. Sci. Rep., 2019, 9(1): 7789[2024-05-31]. . |
44 | KIM G D, LEE J H, SONG S, et al.. Generation of myostatin-knockout chickens mediated by D10A-Cas9 nickase[J]. FASEB J., 2020, 34(4): 5688-5696. |
45 | ZIMMERMANN R, STRAUSS J G, HAEMMERLE G, et al.. Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase[J]. Science, 2004, 306(5700): 1383-1386. |
46 | YANG X, LU X, LOMBÈS M, et al.. The G(0)/G(1) switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase[J]. Cell Metab., 2010, 11(3): 194-205. |
47 | PARK T S, PARK J, LEE J H, et al.. Disruption of G(0)/G(1) switch gene 2 (G0S2) reduced abdominal fat deposition and altered fatty acid composition in chicken[J]. FASEB J., 2019, 33(1): 1188-1198. |
48 | LEE H J, YOON J W, JUNG K M, et al.. Targeted gene insertion into Z chromosome of chicken primordial germ cells for avian sexing model development[J]. FASEB J., 2019, 33(7): 8519-8529. |
49 | LEE H J, LEE K Y, PARK Y H, et al.. Acquisition of resistance to avian leukosis virus subgroup B through mutations on tvb cysteine-rich domains in DF-1 chicken fibroblasts[J/OL]. Vet. Res., 2017, 48(1): 48[2024-05-31]. . |
50 | LEE H J, PARK K J, LEE K Y, et al.. Sequential disruption of ALV host receptor genes reveals no sharing of receptors between ALV subgroups A, B, and J[J/OL]. J. Anim. Sci. Biotechnol., 2019, 10: 23[2024-05-31]. . |
51 | KOSLOVÁ A, TREFIL P, MUCKSOVÁ J, et al.. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus[J]. Proc. Natl. Acad. Sci. USA, 2020, 117(4): 2108-2112. |
52 | 战彦韬.应用CRISPR/Cas9敲低DEF细胞HMGB1基因对鸭坦布苏病毒复制的影响[D].泰安:山东农业大学,2020. |
53 | ADIKUSUMA F, PILTZ S, CORBETT M A, et al.. Large deletions induced by Cas9 cleavage[J]. Nature, 2018, 560(7717): 8-9. |
54 | CULLOT G, BOUTIN J, TOUTAIN J, et al.. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations[J/OL]. Nat. Commun., 2019, 10(1): 1136[2024-05-31]. . |
55 | HAAPANIEMI E, BOTLA S, PERSSON J, et al.. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response[J]. Nat. Med., 2018, 24(7): 927-930. |
56 | IHRY R J, WORRINGER K A, SALICK M R, et al.. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells[J]. Nat. Med., 2018, 24(7): 939-946. |
57 | LEIBOWITZ M L, PAPATHANASIOU S, DOERFLER P A, et al.. Chromothripsis as an on-target consequence of CRISPR-Cas9 genome editing[J]. Nat. Genet., 2021, 53(6): 895-905. |
58 | HU J H, MILLER S M, GEURTS M H, et al.. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57-63. |
59 | ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al.. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759-771. |
60 | XU C, ZHOU Y, XIAO Q, et al.. Programmable RNA editing with compact CRISPR-Cas13 systems from uncultivated microbes[J]. Nat. Meth., 2021, 18(5): 499-506. |
61 | HILLARY V E, CEASAR S A. A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering[J]. Mol. Biotechnol., 2023, 65(3): 311-325. |
62 | PORTO E M, KOMOR A C. In the business of base editors: evolution from bench to bedside[J/OL]. PLoS Biol., 2023, 21(4): e3002071[2024-05-31]. . |
63 | HUANG J, LIN Q, FEI H, et al.. Discovery of deaminase functions by structure-based protein clustering[J]. Cell, 2023, 186(15): 3182-3195. |
64 | ALTAE-TRAN H, KANNAN S, SUBERSKI A J, et al.. Uncovering the functional diversity of rare CRISPR-Cas systems with deep terascale clustering[J/OL]. Science, 2023, 382(6673): eadi1910[2024-05-31]. . |
[1] | 张笑天, 王智, 朱鹏宇, 魏霜, 付伟, 黄春蒙, 李志红, 王慧煜, 焦悦. 一种基于定量PCR的CRISPR/Cas9基因编辑作物快速检测方法的研究[J]. 生物技术进展, 2023, 13(6): 907-912. |
[2] | 曹克浩, 朱军利, 何华山, 徐慰倬. 专利法第四次修改对生物技术专利申请和产业发展的影响[J]. 生物技术进展, 2023, 13(5): 663-670. |
[3] | 王阿利, 刘江东. CRISPR/Cas系统在斑马鱼中的研究进展[J]. 生物技术进展, 2023, 13(4): 485-491. |
[4] | 盖思宇, 陈子奇, 夏涵超, 赵仁贵, 刘相国. 基因编辑技术在植物启动子编辑中的研究进展[J]. 生物技术进展, 2023, 13(3): 321-328. |
[5] | 孙卉, 张春义, 姜凌. 药用植物分子农场研究进展[J]. 生物技术进展, 2023, 13(1): 65-71. |
[6] | 杨洋, 王凤林, 刘德, 罗园园, 朱建华. CRISPR⁃Cas9技术在植物次生代谢物生产中的研究进展[J]. 生物技术进展, 2022, 12(6): 806-816. |
[7] | 于鲲, 薛佳琪, 王进宽, 余永涛. CRISPR/Cas9基因编辑技术在丝状真菌中的应用[J]. 生物技术进展, 2022, 12(5): 696-704. |
[8] | 高维崧, 窦金萍, 韦双, 刘兴健, 张志芳, 李轶女. CRISPR/Cas系统的分类及研究现状[J]. 生物技术进展, 2022, 12(4): 532-538. |
[9] | 党星, 郅斌伟, 曹克浩, 刘婷婷, 陈飚, 丁远杰. 转基因玉米生物育种技术的专利分析及产业发展建议[J]. 生物技术进展, 2022, 12(4): 614-622. |
[10] | 黄耀辉, 王艺洁, 杨立桃, 焦悦, 付仲文. 生物育种新技术作物的安全管理[J]. 生物技术进展, 2022, 12(2): 198-204. |
[11] | 曹巧, 史占良, 张国丛, 班进福, 郑树松, 傅晓艺, 张士昌, 何明琦, 韩然, 高振贤. CRISPR/Cas9技术在小麦育种中的应用进展[J]. 生物技术进展, 2021, 11(6): 661-667. |
[12] | 林敏. 农业生物育种技术的发展历程及产业化对策[J]. 生物技术进展, 2021, 11(4): 405-417. |
[13] | 王梦雨, 王颢潜, 王旭静, 王志兴. 基因编辑产品检测技术研究进展[J]. 生物技术进展, 2021, 11(4): 438-445. |
[14] | 格日乐其木格, 牛振峰, 董丹, 张涛涛, 峥嵘. CRISPR-Cas系统在微生物研究中的应用进展[J]. 生物技术进展, 2021, 11(3): 253-259. |
[15] | 曹豪豪,张红兵,薛溪发,李左群,闫洪波,李会宣. 新型基因编辑技术在单细胞微藻中的应用进展[J]. 生物技术进展, 2021, 11(1): 9-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部