1 |
刘肖静,王旭静,王志兴.CRISPR-Cas系统在植物中的研究进展与监管政策[J].生物技术进展,2021,11(1):1-8.
|
2 |
ISHINO Y, SHINAGAWA H, MAKINO K, et al.. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product[J]. J. Bacteriol., 1987, 169(12): 5429-5433.
|
3 |
SHI J, GAO H, WANG H, et al.. ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions[J]. Plant Biotechnol. J., 2017, 15(2): 207-216.
|
4 |
HAUN W, COFFMAN A, CLASEN B M, et al.. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family[J]. Plant Biotechnol. J., 2014, 12(7): 934-940.
|
5 |
DEMOREST Z L, COFFMAN A, BALTES N J, et al.. Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil[J/OL]. BMC Plant Biol., 2016, 16(1): 225[2023-10-25]. .
|
6 |
ČERMÁK T, BALTES N J, ČEGAN R, et al.. High-frequency, precise modification of the tomato genome[J/OL]. Genome Biol., 2015, 16: 232[2023-10-25]. .
|
7 |
ENDO M, MIKAMI M, TOKI S. Biallelic gene targeting in rice[J]. Plant Physiol., 2016, 170(2): 667-677.
|
8 |
SUN Y, ZHANG X, WU C, et al.. Engineering herbicide-resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase[J]. Mol. Plant, 2016, 9(4): 628-631.
|
9 |
LI J, MENG X, ZONG Y, et al.. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9[J/OL]. Nat. Plants, 2016, 2: 16139[2023-10-25]. .
|
10 |
VOUILLOT L, THÉLIE A, POLLET N. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases[J]. G3: Genes Eenes Eenom. Genet. Bethesda Md., 2015, 5(3): 407-415.
|
11 |
GUNDRY C N, VANDERSTEEN J G, REED G H, et al.. Amplicon melting analysis with labeled primers: a closed-tube method for differentiating homozygotes and heterozygotes[J]. Clin. Chem., 2003, 49(3): 396-406.
|
12 |
CHENG N, WANG Q, SHANG Y, et al.. Rapid and low-cost strategy for detecting genome-editing induced deletion: a single-copy case[J]. Anal. Chim. Acta, 2018, 1019: 111-118.
|
13 |
FUJITA T, YUNO M, KITAURA F, et al.. Detection of genome-edited cells by oligoribonucleotide interference-PCR[J]. DNA Res. Int. J. Rapid Publ. Rep. Genes Genom., 2018, 25(4): 395-407.
|
14 |
HARAYAMA T, RIEZMAN H. Detection of genome-edited mutant clones by a simple competition-based PCR method[J/OL]. PLoS ONE, 2017, 12(6): e0179165[2023-10-15]. .
|
15 |
PENG C, WANG H, XU X, et al.. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction[J]. Plant J. Cell Mol. Biol., 2018, 95(3): 557-567.
|
16 |
HUANG M C, CHEONG W C, LIM L S, et al.. A simple, high sensitivity mutation screening using ampligase mediated T7 endonuclease I and surveyor nuclease with microfluidic capillary electrophoresis[J]. Electrophoresis, 2012, 33(5): 788-796.
|
17 |
THOMAS H R, PERCIVAL S M, YODER B K, et al.. High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis[J/OL]. PLoS ONE, 2014, 9(12): e114632[2023-10-25]. .
|
18 |
LI T, LIU B, SPALDING M H, et al.. High-efficiency TALEN-based gene editing produces disease-resistant rice[J]. Nat. Biotechnol., 2012, 30(5): 390-392.
|
19 |
朱世杨,罗天宽,张小玲,等.8种水稻基因组DNA提取方法的比较[J].安徽农业科学,2009,37(5):1929-1931.
|
20 |
楼巧君,陈亮,罗利军.三种水稻基因组DNA快速提取方法的比较[J].分子植物育种,2005,3(5):749-752.
|
21 |
MARTIN B, LINACRE A. Direct PCR: a review of use and limitations[J]. Sci. Justice, 2020, 60(4): 303-310.
|
22 |
ZISCHEWSKI J, FISCHER R, BORTESI L. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases[J]. Biotechnol. Adv., 2017, 35(1): 95-104.
|