生物技术进展 ›› 2021, Vol. 11 ›› Issue (4): 438-445.DOI: 10.19586/j.2095-2341.2021.0037
收稿日期:
2021-03-23
接受日期:
2021-04-22
出版日期:
2021-07-25
发布日期:
2021-08-02
通讯作者:
王志兴
作者简介:
王梦雨 E-mail:wangmengyu@cau.edu.cn;
Mengyu WANG1(), Haoqian WANG2, Xujing WANG1, Zhixing WANG1()
Received:
2021-03-23
Accepted:
2021-04-22
Online:
2021-07-25
Published:
2021-08-02
Contact:
Zhixing WANG
摘要:
当前国内外生物技术产业革命加速推进,以基因编辑为代表的转基因新技术发展迅猛,新基因、新性状、新产品不断涌现。围绕基因编辑产品的检测方法将成为转基因生物安全监管的重要一环和有效支撑。因此,基于测序技术、酶切技术、PCR技术和其他检测技术4个方面,总结了目前应用于基因编辑产品检测的一些技术方法,并对每种方法的优缺点进行了分析,以期为今后基因编辑产品的检测提供思路,做好转基因监管技术储备。
中图分类号:
王梦雨, 王颢潜, 王旭静, 王志兴. 基因编辑产品检测技术研究进展[J]. 生物技术进展, 2021, 11(4): 438-445.
Mengyu WANG, Haoqian WANG, Xujing WANG, Zhixing WANG. Research Progress of Gene Editing Products Detection Technology[J]. Current Biotechnology, 2021, 11(4): 438-445.
1 | ALBERTS B. The breakthroughs of 2012 [J]. Science, 2012, 338(6114): 1511. |
2 | Method of the year 2013 [J]. Nat. Methods, 2014, 11(1): 1. |
3 | 农业农村部. 农业农村部关于落实好党中央、国务院2021年农业农村重点工作部署的实施意见[EB/OL]. (2021-01-08) [2021-02-26]. . |
4 | 谢科, 饶力群, 李红伟, 等. 基因组编辑技术在植物中的研究进展与应用前景[J]. 中国生物工程杂志, 2013, 33(6):99-104. |
5 | 焦悦, 吴刚, 黄耀辉, 等. 基因组编辑技术及其安全评价管理 [J]. 中国农业科技导报, 2018, 20(4): 12-19. |
6 | 沈平, 章秋艳, 杨立桃, 等. 基因组编辑技术及其安全管理 [J]. 中国农业科学, 2017, 50(8): 1361-1369. |
7 | PABO C O, PEISACH E, GRANT R A. Design and selection of novel Cys2His2 Zinc finger proteins [J]. Annu. Rev. Biochem., 2001, 70:313-340. |
8 | LI T, HUANG S, ZHAO X F, et al.. Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes [J]. Nucl. Acids Res., 2011, 39(14): 6315-6325. |
9 | CONG L, RAN F A, COX D, LIN S, et al.. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. |
10 | 刘耀光, 李构思, 张雅玲, 等. CRISPR/Cas植物基因组编辑技术研究进展[J]. 华南农业大学学报, 2019, 40(5):38-49. |
11 | PUCHTA H. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution[J]. J. Exp. Bot., 2005, 56(409): 1-14. |
12 | MA X, ZHANG Q, ZHU Q, et al.. A robust CRISPR/Cas9 system for convenient, high-efficiency multiplex genome editing in monocot and dicot plants[J]. Mol. Plant, 2015, 8(8): 1274-1284. |
13 | 刘春霞, 耿立召, 许建平. 植物基因组编辑检测方法[J]. 遗传, 2018, 40(12): 1075-1091. |
14 | MA X, CHEN L, ZHU Q, et al.. Rapid decoding of sequence-specific nuclease-induced heterozygous and biallelic mutations by direct sequencing of PCR products [J]. Mol. Plant, 2015, 8(8): 1285-1287. |
15 | 解美霞, 王燕, 赵新, 等. 基于焦磷酸测序技术建立基因编辑水稻检测方法 [J]. 生物技术进展, 2020, 10(6): 668-673. |
16 | 马永平, 易发平. 焦磷酸测序技术及其在分子生物学领域的应用[J]. 国外医学(分子生物学分册), 2003(2): 115-118. |
17 | 王燕. PL3基因编辑水稻编辑位点检测方法的研究[D]. 天津:天津农学院, 硕士学位论文, 2019. |
18 | 李葱葱, 高越, 沈晓玲, 等. 基于焦磷酸测序技术的基因编辑位点检测方法的建立[J]. 中国农业大学学报, 2019, 24(9):10-16. |
19 | 金莹, 房保海, 刘新亮, 等. 焦磷酸测序技术检测大豆过敏原成分GlymBd 30K基因[J]. 安徽农业科学, 2015, 43(3): 29-31, 49. |
20 | ZONG Y, WANG Y, LI C, et al.. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion [J]. Nat. Biotechnol., 2017, 35(5): 438-440. |
21 | LI D, QIU Z, SHAO Y, et al.. Heritable gene targeting in the mouse and rat using a CRISPR-Cas system[J]. Nat. Biotechnol., 2013, 31:681-683. |
22 | VOUILLOT L, THÉLIE A, POLLET N. Comparison of T7E1 and surveyor mismatch cleavage assays to detect mutations triggered by engineered nucleases [J]. Genes Genom. Genet., 2015, 5(3): 407-415. |
23 | 邢慧丽. CRISPR/Cas9系统在植物基因组编辑中的应用[D]. 北京:中国农业大学, 博士学位论文, 2017. |
24 | KIM D, ALPTEKIN B, BUDAK H. CRISPR/Cas9 genome editing in wheat [J]. Funct. Integr. Genomics, 2018, 18(1): 31-41. |
25 | ARAI T, MAJIMA H, WATANABE A, et al.. A simple method to detect point mutations in Aspergillus fumigatus cyp51A gene using a surveyor nuclease assay [J/OL]. Antimicrob. Agents Chemother., 2020, 64(4): e02271-19[2021-06-08]. . DOI: 10.1128/AAC. 02271-19 . |
26 | PILCH J, ASMAN M, JAMROZ E, et al.. Surveyor nuclease detection of mutations and polymorphisms of mtDNA in children [J]. Pediatr. Neurol., 2010, 43(5): 325-330. |
27 | QIU P, SHANDILYA H, D'ALESSIO J M, et al.. Mutation detection using surveyor nuclease [J]. Biotechniques, 2004, 36(4): 702-707. |
28 | ZHANG Z, MAO Y, HA S, et al.. A multiplex CRISPR/Cas9 platform for fast and efficient editing of multiple genes in Arabidopsis [J]. Plant Cell Rep., 2015, 35(7): 1519-1533. |
29 | YIN X, BISWAL A K, DIONORA J, et al.. CRISPR-Cas9 and CRISPR-Cpf1 mediated targeting of a stomatal developmental gene EPFL9 in rice [J]. Plant Cell Rep., 2017, 36(5): 745-757. |
30 | DU H, ZENG X, ZHAO M, et al.. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9 [J]. J. Biotechnol., 2016, 217:90-97. |
31 | HUA Y, WANG C, HUANG J, et al.. A simple and efficientmethod for CRISPR/Cas9-induced mutant screening [J]. J. Genet. Genom., 2017, 44 (4):207-213. |
32 | LIANG Z, CHEN K, YAN Y, et al.. Genotyping genome-edited mutations in plants using CRISPR ribonucleoprotein complexes [J]. Plant Biotechnol. J., 2018, 16(12): 2053-2062. |
33 | FENG Z, ZHANG B, DING W, et al.. Efficient genome editing in plants using a CRISPR/Cas system [J]. Cell Res., 2013, 23(10): 1229-1232. |
34 | LU Y M, ZHU J K. Precise editing of a target base in the rice senome using a modified CRISPR /Cas9 system [J]. Mol. Plant, 2017, 10 (3):523-525. |
35 | 唐棣, 王志民. SNPs检测方法研究进展 [J]. 上海交通大学学报(农业科学版), 2007, 25(4):405-418. |
36 | 麻艳超, 郭振清, 周丽艳, 等. SNP的检测方法及其在农作物遗传育种中的应用[J]. 河北科技师范学院学报, 2014, 28(3): 24-28. |
37 | KIM J M, KIM D, KIM S, et al.. Genotyping with CRISPR-Cas-derived RNA-guided endonucleases [J/OL]. Nat. Commun., 2014, 5:3157[2021-06-08]. . DOI: 10.1038/ncomms4157 . |
38 | MAO Y, ZHANG H, XU N, et al.. Application of the CRISPR-Cas system for efficient genome engineering in plants[J]. Mol. Plant, 2013, 6(6): 2008-2011. |
39 | DENG L, WANG H, SUN C, et al.. Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system[J]. J. Genet. Genomics, 2018, 45(1): 51-54. |
40 | HILIOTI Z, GANOPOULOS I, AJITH S, et al.. A novel arrangement of zinc finger nuclease system for in vivo targeted genome engineering: the tomato LEC1-LIKE4 gene case [J]. Plant Cell Rep., 2016, 35(11): 2241-2255. |
41 | VARSHNEY G K, CARRINGTON B, PEI W, et al.. A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish [J]. Nat. Protoc., 2016, 11(12): 2357-2375. |
42 | ELLERBROK H, NATTERMANN H, ÖZEL M, et al.. Rapid and sensitive identification of pathogenic and apathogenic bacillus anthracis, by real-time PCR [J]. FEMS Microbiol. Lett., 2002, 214(1): 51-59. |
43 | PENG C, WANG H, XU X, et al.. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction [J]. Plant J., 2018, 95(3): 557-567. |
44 | CHHALLIYIL P, ILVES H, KAZAKOV S A, et al.. A real-time quantitative PCR method specific for detection and quantification of the first commercialized genome-edited plant [J/OL]. Foods, 2020, 9(9): 1245[2021-06-08]. . DOI: 10.3390/foods9091245 . |
45 | 林彩琴, 姚波. 数字PCR技术进展 [J]. 化学进展, 2012, 24(12): 2415-2423. |
46 | GAO R, FEYISSA B A, CROFT M, et al.. Gene editing by CRISPR/Cas9 in the obligatory outcrossing Medicago sativa [J]. Planta, 2018, 247(4): 1043-1050. |
47 | PENG C, ZHENG M, DING L, et al.. Accurate detection and evaluation of the gene-editing frequency in plants using droplet digital PCR [J/OL]. Front. Plant Sci., 2020, 11: 610790[2021-06-08]. . |
48 | 刘晓, 朱鹏宇, 王垚, 等. 数字PCR在功能核酸精准检测中的研究进展 [J]. 生物技术通报, 2018, 34(9): 149-162. |
49 | ANDERSSON M, TURESSON H, NICOLIA A, et al.. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts [J]. Plant Cell Rep., 2017, 36(1): 117-128. |
50 | CHEN L, LI W, KATIN-GRAZZINI L, et al.. A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants [J/OL]. Hortic. Res., 2018, 5:13[2021-06-08]. . |
51 | THOMAS H R, PERCIVAL S M, YODER B K, et al.. High-throughput genome editing and phenotyping facilitated by high resolution melting curve analysis [J/OL]. PLoS ONE, 9(12): e114632[2021-06-08]. . |
52 | WANG K, HIRUKI C. Heteroduplex mobility assay detects DNA mutations for differentiation of closely related phytoplasma strains [J]. J. Microbiol. Methods, 2000, 41(1): 59-68. |
53 | CHENOUARD V, BRUSSELLE L, HESLAN J M, et al.. A rapid and cost-effective method for genotyping genome-edited animals: a heteroduplex mobility assay using microfluidic capillary electrophoresis [J]. J. Genet. Genomics, 2016, 43(5): 341-348. |
54 | FOSTER S D, GLOVER S R, TURNER A N, et al.. A mixing heteroduplex mobility assay (mHMA) to genotype homozygous mutants with small indels generated by CRISPR-Cas9 nucleases [J]. Methods X, 2018, 6:1-5. |
55 | DE MENDONÇA M C, DE AMORIM FERREIRA A M, GDOS SANTOS M, et al.. Heteroduplex mobility assay and single-stranded conformation polymorphism analysis as methodologies for detecting variants of human erythroviruses [J]. J. Virol. Methods, 2008, 148(1-2): 40-47. |
56 | ZHENG X, YANG S, ZHANG D, et al.. Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism [J]. Plant Cell Rep., 2016, 35(7): 1545-1554. |
57 | YANG Y, ZHU K, LI H, et al.. Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development[J]. Plant Biotechnol. J., 2018, 16(7): 1322-1335. |
58 | KC R, SRIVASTAVA A, WILKOWSKI J M, et al.. Detection of nucleotide-specific CRISPR/Cas9 modified alleles using multiplex ligation detection [J/OL]. Sci. Rep., 2016, 25(6): 32048[2021-06-08]. . |
59 | RUIZ C, HUANG J, GIARDINA S F, et al.. Single-molecule detection of cancer mutations using a novel PCR-LDR-qPCR assay [J]. Hum. Mutat., 2020, 41(5): 1051-1068. |
60 | 赵杰, 游新勇, 徐贞贞, 等. SNP检测方法在动物研究中的应用 [J]. 农业工程学报, 2018, 34(4): 299-305. |
61 | SCHNEIDER A K, NIEMEYER C M. DNA surface technology: From gene sensors to integrated systems for life and materials sciences [J]. Angew. Chem. Int. Ed. Engl., 2018, 57(52): 16959-16967. |
62 | 牛青山, 宋志豪, 杜馨雨. 关于Y-SNP位点的研究进展 [J].中国刑警学院学报, 2019(6): 117-124. |
63 | 张立男, 宋雨桐, 姜磊, 等. 71个Y-SNP位点在西北汉族人群的多态性及法医学应用价值[J]. 法医学杂志, 2019, 35(1):23-29, 38. |
64 | CLENDENEN T V, RENDLEMAN J, GE W, et al.. Genotyping of single nucleotide polymorphisms in DNA isolated from serum using sequenom MassARRAY technology[J/OL]. PLoS ONE, 2015, 10(8): e135943[2021-06-08]. . |
65 | TREMBIZKI E, SMITH H, LAHRA M M, et al.. High-throughput informative single nucleotide polymorphism-based typing of Neisseria gonorrhoeae using the sequenom MassARRAY iPLEX platform[J]. J. Antimicrob. Chemother., 2014, 69(6): 1526-1532. |
66 | 国际农业生物技术应用服务组织. 2019年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 2021, 41(1):114-119. |
67 | 吴刚, 李文龙, 石建新, 等. 澳大利亚转基因生物安全监管概况及启示[J]. 生物技术通报, 2019, 35(3): 138-143. |
[1] | 唐广宣, 何莉薇, 陈泳妤, 张佳研, 戴雅琪, 吕辉雄, 刘丽辉. 植物内生菌定殖检测技术及其应用[J]. 生物技术进展, 2023, 13(1): 55-64. |
[2] | 孙卉, 张春义, 姜凌. 药用植物分子农场研究进展[J]. 生物技术进展, 2023, 13(1): 65-71. |
[3] | 杨洋, 王凤林, 刘德, 罗园园, 朱建华. CRISPR⁃Cas9技术在植物次生代谢物生产中的研究进展[J]. 生物技术进展, 2022, 12(6): 806-816. |
[4] | 李晶晶, 赵海波, 翟睿, 梁亮, 范培蕾, 赵雨佳. 糖化血红蛋白(HbA1c)检测技术与标准化研究进展[J]. 生物技术进展, 2022, 12(6): 837-846. |
[5] | 于鲲, 薛佳琪, 王进宽, 余永涛. CRISPR/Cas9基因编辑技术在丝状真菌中的应用[J]. 生物技术进展, 2022, 12(5): 696-704. |
[6] | 高维崧, 窦金萍, 韦双, 刘兴健, 张志芳, 李轶女. CRISPR/Cas系统的分类及研究现状[J]. 生物技术进展, 2022, 12(4): 532-538. |
[7] | 党星, 郅斌伟, 曹克浩, 刘婷婷, 陈飚, 丁远杰. 转基因玉米生物育种技术的专利分析及产业发展建议[J]. 生物技术进展, 2022, 12(4): 614-622. |
[8] | 黄耀辉, 王艺洁, 杨立桃, 焦悦, 付仲文. 生物育种新技术作物的安全管理[J]. 生物技术进展, 2022, 12(2): 198-204. |
[9] | 余卉茹, 纪艺, 彭城, 徐晓丽, 汪小福, 孙梅好, 陈笑芸. 肉类掺假检测技术研究进展[J]. 生物技术进展, 2022, 12(2): 213-221. |
[10] | 曹巧, 史占良, 张国丛, 班进福, 郑树松, 傅晓艺, 张士昌, 何明琦, 韩然, 高振贤. CRISPR/Cas9技术在小麦育种中的应用进展[J]. 生物技术进展, 2021, 11(6): 661-667. |
[11] | 林敏. 农业生物育种技术的发展历程及产业化对策[J]. 生物技术进展, 2021, 11(4): 405-417. |
[12] | 谢宇宙, 付伟, 闫超杰, 王智, 朱鹏宇, 任永超, 张永江, 相宁. 基于CRISPR/Cas原理的转基因产品检测技术研究进展[J]. 生物技术进展, 2021, 11(4): 430-437. |
[13] | 王子健, 陈颖钰, 胡长敏, 郭爱珍. 我国兽用诊断试剂产业现状与未来趋势[J]. 生物技术进展, 2021, 11(4): 471-475. |
[14] | 格日乐其木格, 牛振峰, 董丹, 张涛涛, 峥嵘. CRISPR-Cas系统在微生物研究中的应用进展[J]. 生物技术进展, 2021, 11(3): 253-259. |
[15] | 曹豪豪,张红兵,薛溪发,李左群,闫洪波,李会宣. 新型基因编辑技术在单细胞微藻中的应用进展[J]. 生物技术进展, 2021, 11(1): 9-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部