1 |
LI C, LI W, ZHOU Z, et al.. A new rice breeding method: CRISPR/Cas9 system editing of the Xa13 promoter to cultivate transgene‐free bacterial blight‐resistant rice[J/OL]. Plant Biotechnol. J., 2020, 18(2): 313[2023-02-10]. .
|
2 |
PORTO M S, PINHEIRO M P N, BATISTA V G L, et al.. Plant promoters: an approach of structure and function[J]. Mol. Biotechnol., 2014, 56: 38-49.
|
3 |
TSUDA K, SUZUKI T, MIMURA M, et al.. Comparison of constitutive promoter activities and development of maize ubiquitin promoter-and gateway-based binary vectors for rice[J]. Plant Biotechnol., 2022, 39(2): 139-146.
|
4 |
FUJIWARA T, BEACHY R N. Tissue-specific and temporal regulation of a β-conglycinin gene: roles of the RY repeat and other cis-acting elements[J]. Plant Mol. Biol., 1994, 24: 261-272.
|
5 |
武健东, 姜翠萍, 江海洋, 等. 玉米蔗糖合酶基因启动子的克隆及功能分析[J]. 安徽农业大学学报, 2015, 42(3): 327-332.
|
6 |
董浩, 赵轶君, 李红民. 生菜rbcS基因启动子序列的克隆与分析[J]. 华北农学报, 2013, 28(1): 88-92.
|
7 |
王志新, 赵琳, 李文滨. 植物诱导型启动子的研究进展[J]. 大豆科技, 2011(3): 5-9.
|
8 |
王旭静, 李为民, 唐巧玲,等. 中棉(Gossypium arboreum)光诱导基因Gacab启动子在转基因烟草中的功能缺失分析[J]. 作物学报, 2009, 35(6):1006-1012.
|
9 |
魏桂民, 张金文, 王蒂, 等. 马铃薯 Sgt1 基因启动子的结构及功能分析[J]. 中国生物化学与分子生物学报, 2013, 29(10): 969-977.
|
10 |
WANG C T, RU J N, LIU Y W, et al.. Maize WRKY transcription factor ZmWRKY106 confers drought and heat tolerance in transgenic plants[J/OL]. Int. J. Mol. Sci., 2018, 19(10): 3046[2023-02-10]. .
|
11 |
MURPHY D J. A seed-specific Brassica napus oleosin promoter interacts with a G-box-specific protein and may be bi-directional[J]. Plant Mol. Biol., 1994, 24: 327-340.
|
12 |
DHADI S R, DESHPANDE A, DRISCOLL K, et al. Major cis-regulatory elements for rice bidirectional promoter activity reside in the 5′-untranslated regions[J]. Gene, 2013, 526(2): 400-410.
|
13 |
AHMAR S, SAEED S, KHAN M H U, et al.. A revolution toward gene-editing technology and its application to crop improvement[J/OL]. Int. J. Mol. Sci., 2020, 21(16): 5665[2023-02-10]. .
|
14 |
TOWNSEND J A, WRIGHT D A, WINFREY R J, et al.. High-frequency modification of plant genes using engineered zinc-finger nucleases[J]. Nature, 2009, 459(7245): 442-445.
|
15 |
ZHANG F, MAEDER M L, UNGER-WALLACE E, et al.. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases[J]. Proc. Natl. Acad. Sci. USA, 2010, 107(26): 12028-12033.
|
16 |
PUCHTA H. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution[J]. J. Exp. Bot., 2005, 56(409): 1-14.
|
17 |
GAJ T, GERSBACH C A, BARBAS C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends Biotechnol., 2013, 31(7): 397-405.
|
18 |
SHUKLA V K, DOYON Y, MILLER J C, et al. Precise genome modification in the crop species Zea mays using zinc-finger nucleases[J]. Nature, 2009, 459(7245): 437-441.
|
19 |
ZHANG F, MAEDER M L, UNGER-WALLACE E, et al.. High frequency targeted mutagenesis in Arabidopsis thaliana using zinc finger nucleases[J]. Proc. Natl. Acad. Sci. USA, 2010, 107(26): 12028-12033.
|
20 |
OSAKABE K, OSAKABE Y, TOKI S. Site-directed mutagenesis in Arabidopsis using custom-designed zinc finger nucleases[J]. Proc. Natl. Acad. Sci. USA, 2010, 107(26): 12034-12039.
|
21 |
CURTIN S J, ZHANG F, SANDER J D, et al.. Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases[J]. Plant Physiol., 2011, 156(2): 466-473.
|
22 |
CARLSON D F, FAHRENKRUG S C, HACKETT P B. Targeting DNA with fingers and TALENs[J/OL]. Mol. Ther. Nucl. Acids, 2012, 1(1): e3[2012-01-24]. .
|
23 |
CARROLL D, MORTON J J, BEUMER K J, et al.. Design, construction and in vitro testing of zinc finger nucleases[J]. Nature Prot., 2006, 1(3): 1329-1341.
|
24 |
SCHORNACK S, MEYER A, RÖMER P, et al.. Gene-for-gene-mediated recognition of nuclear-targeted AvrBs3-like bacterial effector proteins[J]. J. Plant Physiol., 2006, 163(3): 256-272.
|
25 |
LAMB B M, MERCER A C, BARBAS III C F. Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases[J]. Nucl. Acids Res., 2013, 41(21): 9779-9785.
|
26 |
SAUER N J, MOZORUK J, MILLER R B, et al.. Oligonucleotide‐directed mutagenesis for precision gene editing[J]. Plant Biotechnol. J., 2016, 14(2): 496-502.
|
27 |
KUMAR V, JAIN M. The CRISPR-Cas system for plant genome editing: advances and opportunities[J]. J. Exp. Bot., 2015, 66(1): 47-57.
|
28 |
LI T, LIU B, SPALDING M H, et al.. High-efficiency TALEN-based gene editing produces disease-resistant rice[J]. Nat. Biotechnol., 2012, 30(5): 390-392.
|
29 |
LIANG Z, ZHANG K, CHEN K, et al. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system[J]. J. Genet. Genom., 2014, 41(2): 63-68.
|
30 |
WENDT T, HOLM P B, STARKER C G, et al.. TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants[J]. Plant Mol. Biol., 2013, 83: 279-285.
|
31 |
CHYLINSKI K, MAKAROVA K S, CHARPENTIER E, et al.. Classification and evolution of type Ⅱ CRISPR-Cas systems[J]. Nucl. Acids Res., 2014, 42(10): 6091-6105.
|
32 |
SMIRNOV A V, YUNUSOVA A M, LUKYANCHIKOVA V A, et al.. CRISPR/Cas9, a universal tool for genomic engineering[J]. Vavilov J. Genet. Breed., 2016, 20(4): 493-510.
|
33 |
GASIUNAS G, BARRANGOU R, HORVATH P, et al.. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc. Natl. Acad. Sci. USA, 2012, 109(39): 2579-2586.
|
34 |
LIANG Z, ZHANG K, CHEN K, et al.. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system[J]. J. Genet. Genom., 2014, 41(2): 63-68.
|
35 |
TANG X, LIU G, ZHOU J, et al.. A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice[J]. Genome Biol., 2018, 19(1): 1-13.
|
36 |
CAI Y, CHEN L, LIU X, et al.. CRISPR/Cas9‐mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean[J]. Plant Biotechnol. J., 2018, 16(1): 176-185.
|
37 |
MA X, CHEN X, JIN Y, et al.. Small molecules promote CRISPR-Cpf1-mediated genome editing in human pluripotent stem cells[J/OL]. Nat. Commun., 2018, 9(1): 1303[2023-02-10]. .
|
38 |
RIESENBERG S, MARICIC T. Targeting repair pathways with small molecules increases precise genome editing in pluripotent stem cells[J/OL]. Nat. Commun., 2018, 9(1): 2164[2023-02-10]. .
|
39 |
BERNABÉ‐ORTS J M, CASAS‐RODRIGO I, MINGUET E G, et al.. Assessment of Cas12a‐mediated gene editing efficiency in plants[J]. Plant Biotechnol. J., 2019, 17(10): 1971-1984.
|
40 |
BAYAT H, MODARRESSI M H, RAHIMPOUR A. The conspicuity of CRISPR-Cpf1 system as a significant breakthrough in genome editing[J]. Curr. Microbiol., 2018, 75: 107-115.
|
41 |
MALZAHN A A, TANG X, LEE K, et al.. Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis [J]. BMC Biol., 2019, 17(1): 1-14.
|
42 |
SAFARI F, ZARE K, NEGAHDARIPOUR M, et al.. CRISPR Cpf1 proteins: structure, function and implications for genome editing[J]. Cell Biosci., 2019, 9: 1-21.
|
43 |
YIN X, ANAND A, QUICK P, et al.. Editing a stomatal developmental gene in rice with CRISPR/Cpf1[M]// Plant Genome Editing with CRISPR Systems: Methods and Protocols, 2019: 257-268.
|
44 |
LI B, RUI H, LI Y, et al.. Robust CRISPR/Cpf1 (Cas12a)‐mediated genome editing in allotetraploid cotton (Gossypium hirsutum)[J]. Plant Biotechnol. J., 2019, 17(10): 1862-1864.
|
45 |
ENDO A, MASAFUMI M, KAYA H, et al.. Efficient targeted mutagenesis of rice and tobacco genomes using Cpf1 from Francisella novicida [J/OL]. Sci. Rep., 2016, 6(1): 38169[2023-02-10]. .
|
46 |
JIA H, ORBOVIĆ V, WANG N. CRISPR‐LbCas12a‐mediated modification of citrus[J]. Plant Biotechnol. J., 2019, 17(10): 1928-1937.
|
47 |
RÖMER P, RECHT S, STRAUß T, et al.. Promoter elements of rice susceptibility genes are bound and activated by specific TAL effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae [J]. New Phytol., 2010, 187(4): 1048-1057.
|
48 |
YUAN T, LI X, XIAO J, et al.. Characterization of Xanthomonas oryzae-responsive cis-acting element in the promoter of rice race-specific susceptibility gene Xa13 [J]. Mol. Plant, 2011, 4(2): 300-309.
|
49 |
ZAFAR K, KHAN M Z, AMIN I, et al.. Precise CRISPR-Cas9 mediated genome editing in super basmati rice for resistance against bacterial blight by targeting the major susceptibility gene[J/OL]. Front. Plant Sci., 2020, 11: 575[2023-02-10]. .
|
50 |
XU Z, XU X, GONG Q, et al.. Engineering broad-spectrum bacterial blight resistance by simultaneously disrupting variable TALE-binding elements of multiple susceptibility genes in rice[J]. Mol. Plant, 2019, 12(11): 1434-1446.
|
51 |
YU K, LIU Z, GUI H, et al.. Highly efficient generation of bacterial leaf blight-resistant and transgene-free rice using a genome editing and multiplexed selection system[J]. BMC Plant Biol., 2021, 21(1): 1-10.
|
52 |
PENG A, CHEN S, LEI T, et al.. Engineering canker‐resistant plants through CRISPR/Cas9‐targeted editing of the susceptibility gene Cs LOB 1 promoter in citrus[J]. Plant Biotechnol. J., 2017, 15(12): 1509-1519.
|
53 |
HUANG L, LI Q, ZHANG C, et al.. Creating novel Wx alleles with fine‐tuned amylose levels and improved grain quality in rice by promoter editing using CRISPR/Cas9 system[J/OL]. Plant Biotechnol. J., 2020, 18(11): 2164[2023-02-10]. .
|
54 |
ULMASOV T. CRISPR/Cas9-based editing of OsNF-YC4/GmNF-YC4 promoter yields high-protein crops[J]. J. Am. Oil Chem. Soc., 2022, 99: 44-45.
|
55 |
RODRÍGUEZ-LEAL D, LEMMON Z H, MAN J, et al.. Engineering quantitative trait variation for crop improvement by genome editing[J]. Cell, 2017, 171(2): 470-480.
|
56 |
SOMSSICH M, JE B I, SIMON R, et al.. CLAVATA-WUSCHEL signaling in the shoot meristem[J]. Development, 2016, 143(18): 3238-3248.
|
57 |
WANG X, AGUIRRE L, RODRÍGUEZ-LEAL D, et al.. Dissecting cis-regulatory control of quantitative trait variation in a plant stem cell circuit[J]. Nat. Plants, 2021, 7(4): 419-427.
|
58 |
WANG G, ZHANG X, HUANG W, et al.. Increased seed number per silique in Brassica juncea by deleting cis‐regulatory region affecting BjCLV1 expression in carpel margin meristem[J]. Plant Biotechnol. J., 2021, 19(11): 2333-2348.
|
59 |
LIU L, GALLAGHER J, AREVALO E D, et al.. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes[J]. Nat. Plants, 2021, 7(3): 287-294.
|
60 |
JIN B, SHENG Z, MUHAMMAD I, et al.. Cloning and functional analysis of the promoter of a stress-inducible gene (Zmap) in maize[J/OL]. PLoS ONE, 2019, 14(2): e0211941[2023-02-10]. .
|
61 |
YANG T, GUO L, JI C, et al.. The B3 domain-containing transcription factor ZmABI19 coordinates expression of key factors required for maize seed development and grain filling[J]. Plant Cell, 2021, 33(1): 104-128.
|
62 |
LI Z, FU D, WANG X, et al.. The transcription factor bZIP68 negatively regulates cold tolerance in maize[J]. Plant Cell, 2022, 34(8): 2833-2851.
|
63 |
YANG Z, PATRA B, LI R, et al.. Promoter analysis reveals cis-regulatory motifs associated with the expression of the WRKY transcription factor CrWRKY1 in Catharanthus roseus [J]. Planta, 2013, 238: 1039-1049.
|