生物技术进展 ›› 2023, Vol. 13 ›› Issue (4): 485-491.DOI: 10.19586/j.2095-2341.2023.0033
• 进展评述 •
收稿日期:
2023-03-15
接受日期:
2023-03-31
出版日期:
2023-07-25
发布日期:
2023-08-03
通讯作者:
刘江东
作者简介:
王阿利 E-mail: 2020202040077@whu.edu.cn;
Received:
2023-03-15
Accepted:
2023-03-31
Online:
2023-07-25
Published:
2023-08-03
Contact:
Jiangdong LIU
摘要:
斑马鱼是生物学中十分重要的模式生物,可作为基因功能分析、人类疾病病理学研究和新药研发的有利工具。它具有易于控制操作、与人类进化关系相近的优势,目前已经开发了多种斑马鱼模型用于研究人类相关疾病。聚集的有规则间隔的短回文重复序列及其关联蛋白(the clustered regularly interspaced short palindromic repeats and CRISPR-associated proteins,CRISPR/Cas)技术的出现,大大降低了斑马鱼基因编辑的复杂性。主要描述了CRISPR/Cas系统的基本原理、技术革新,总结了CRISPR/Cas系统在斑马鱼基因敲除或敲入、活细胞成像、转录调控、多重靶向、建立疾病模型中的重要作用,以期为探究CRISPR/Cas系统在斑马鱼基因组学研究中的应用提供一定思路。
中图分类号:
王阿利, 刘江东. CRISPR/Cas系统在斑马鱼中的研究进展[J]. 生物技术进展, 2023, 13(4): 485-491.
Ali WANG, Jiangdong LIU. Research Progress on the CRISPR/Cas System in Zebrafish[J]. Current Biotechnology, 2023, 13(4): 485-491.
种类 | CRISPR酶 | 向导RNA | PAM序列 | 目标序列 | 应用 | 参考文献 |
---|---|---|---|---|---|---|
Ⅱ | Cas9 | sgRNA | NGG | DNA | 基因组编辑、活细胞成像、转录调控 | [ |
Ⅴ | Cas12 | crRNA/sgRNA | TTN | DNA | 基因组编辑 | [ |
Ⅵ | Cas13 | crRNA | — | RNA | RNA编辑和示踪 | [ |
表1 CRISPR/Cas Class2系统的种类及其特征
Table 1 Types and characteristics of CRISPR/Cas Class 2 systems
种类 | CRISPR酶 | 向导RNA | PAM序列 | 目标序列 | 应用 | 参考文献 |
---|---|---|---|---|---|---|
Ⅱ | Cas9 | sgRNA | NGG | DNA | 基因组编辑、活细胞成像、转录调控 | [ |
Ⅴ | Cas12 | crRNA/sgRNA | TTN | DNA | 基因组编辑 | [ |
Ⅵ | Cas13 | crRNA | — | RNA | RNA编辑和示踪 | [ |
1 | KARI G, RODECK U, DICKER A P. Zebrafish: an emerging model system for human disease and drug discovery[J]. Clin. Pharmacol. Ther., 2007, 82(1): 70-80. |
2 | VAN DER O J, JORE M M, WESTRA E R, et al.. CRISPR-based adaptive and heritable immunity in prokaryotes[J]. Trends Biochem. Sci., 2009, 34(8): 401-407. |
3 | HSU P D, SCOTT D A, WEINSTEIN J A, et al.. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat. Biotechnol., 2013, 31(9): 827-832. |
4 | CONG L, RAN F A, COX D, et al.. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. |
5 | KETTLEBOROUGH R N, BUSCH-NENTWICH E M, HARVEY S A, et al.. A systematic genome-wide analysis of zebrafish protein-coding gene function[J]. Nature, 2013, 496(7446): 494-497. |
6 | BARRANGOU R, FREMAUX C, DEVEAU H, et al.. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709-1712. |
7 | WRIGHT A V, NUÑEZ J K, DOUDNA J A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering[J]. Cell, 2016, 164(1-2): 29-44. |
8 | MAKAROVA K S, WOLF Y I, IRANZO J, et al.. Evolutionary classification of CRISPR-Cas systems: a burst of class 2 and derived variants[J]. Nat. Rev. Microbiol., 2020, 18(2): 67-83. |
9 | PETRI K, ZHANG W T, MA J Y, et al.. CRISPR prime editing with ribonucleoprotein complexes in zebrafish and primary human cells[J]. Nat. Biotechnol., 2022, 40(2): 189-193. |
10 | CHAN S H, TANG Y, MIAO L Y, et al.. Brd4 and P300 confer transcriptional competency during zygotic genome activation[J]. Dev. Cell, 2019, 49(6): 867-881. |
11 | LONG L J, GUO H, YAO D, et al.. Regulation of transcriptionally active genes via the catalytically inactive Cas9 in C. elegans and D. rerio [J]. Cell Res., 2015, 25(5): 638-641. |
12 | HAN B Z, ZHANG Y G, ZHOU Y, et al.. ErCas12a and T5exo-ErCas12a mediate simple and efficient genome editing in zebrafish[J/OL]. Biology, 2022, 11(3): 411[2022-03-08]. . |
13 | XIN C C, YIN J H, YUAN S P, et al.. Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption[J/OL]. Nat. Commun., 2022, 13(1): 5623[2022-09-24]. . |
14 | MORENO-MATEOS M A, FERNANDEZ J P, ROUET R, et al.. CRISPR-Cpf1 mediates efficient homology-directed repair and temperature-controlled genome editing[J/OL]. Nat. Commun., 2017, 8(1): 2024[2017-12-08]. . |
15 | HUANG Y K, GAO B Q, MENG Q, et al.. CRISPR-dCas13-tracing reveals transcriptional memory and limited mRNA export in developing zebrafish embryos[J/OL]. Genome Biol., 2023, 24(1): 15[2023-01-19]. . |
16 | KUSHAWAH G, HERNANDEZ-HUERTAS L, EZ A N, et al.. CRISPR-Cas13d induces efficient mRNA knockdown in animal embryos[J]. Dev. Cell, 2020, 54(6): 805-817. |
17 | LIU D, WANG Z X, XIAO A, et al.. Efficient gene targeting in zebrafish mediated by a zebrafish-codon-optimized Cas9 and evaluation of off-targeting effect[J]. J. Genet. Genomics, 2014, 41(1): 43-46. |
18 | MOJICA F J M, DÍEZ-VILLASEÑOR C, GARCÍA-MARTÍNEZ J, et al.. Short motif sequences determine the targets of the prokaryotic CRISPR defence system[J]. Microbiology, 2009, 155(3): 733-740. |
19 | SHAH S A, ERDMANN S, MOJICA F J M, et al.. Protospacer recognition motifs: mixed identities and functional diversity[J]. RNA Biol., 2013, 10(5): 891-899. |
20 | JINEK M, CHYLINSKI K, FONFARA I, et al.. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816-821. |
21 | STERNBERG S H, REDDING S, JINEK M, et al.. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9[J]. Nature, 2014, 507(7490): 62-67. |
22 | JIANG W Y, BIKARD D, COX D, et al.. RNA-guided editing of bacterial genomes using CRISPR-Cas systems[J]. Nat. Biotechnol., 2013, 31(3): 233-239. |
23 | KLEINSTIVER B P, PREW M S, TSAI S Q, et al.. Engineered CRISPR-Cas9 nucleases with altered PAM specificities[J]. Nature, 2015, 523(7561): 481-485. |
24 | FENG Y, CHEN C, HAN Y X, et al.. Expanding CRISPR/Cas9 genome editing capacity in zebrafish using SaCas9[J]. G3-Genes Genom. Genet., 2016, 6(8): 2517-2521. |
25 | LIU Y X, LIANG F, DONG Z J, et al.. Genome editing in zebrafish by ScCas9 recognizing NNG PAM[J/OL]. Cells, 2021, 10(8): 2099[2021-08-16]. . |
26 | HOSHIJIMA K, JURYNEC M J, KLATT S D, et al.. Highly efficient CRISPR-Cas9-based methods for generating deletion mutations and F0 embryos that lack gene function in zebrafish[J]. Dev. Cell, 2019, 51(5): 645-657. |
27 | FERNANDEZ J P, VEJNAR C E, GIRALDEZ A J, et al.. Optimized CRISPR-Cpf1 system for genome editing in zebrafish[J]. Methods, 2018, 150:11-18. |
28 | ABLAIN J, DURAND E M, YANG S, et al.. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish[J]. Dev. Cell, 2015, 32(6): 756-764. |
29 | TERZIOGLU M, SARALAHTI A, PIIPPO H, et al.. Improving CRISPR/Cas9 mutagenesis efficiency by delaying the early development of zebrafish embryos[J/OL]. Sci. Rep., 2020, 10(1): 21023[2020-12-03]. . |
30 | AUER T O, DUROURE K, CIAN A D, et al.. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair[J]. Genome Res., 2014, 24(1): 142-153. |
31 | ZU Y, TONG X J, WANG Z X, et al.. TALEN-mediated precise genome modification by homologous recombination in zebrafish[J]. Nat. Methods, 2013, 10(4): 329-331. |
32 | BAI H P, LIU L J, AN K, et al.. CRISPR/Cas9-mediated precise genome modification by a long ssDNA template in zebrafish[J/OL]. BMC Genomics, 2020, 21(1): 67[2020-01-21]. . |
33 | ANZALONE A V, KOBLAN L W, LIU D R. Genome editing with CRISPR-Cas nucleases, base editors, transposases and prime editors[J]. Nat. Biotechnol., 2020, 38(7): 824-844. |
34 | LEVIC D S, YAMAGUCHI N, WANG S Y, et al.. Knock-in tagging in zebrafish facilitated by insertion into non-coding regions[J/OL]. Development, 2021, 148(19): dev199994[2021-07-08]. . |
35 | SIELIWONCZYK E, VANDENDRIESSCHE B, CLAES C, et al.. Improved selection of zebrafish CRISPR editing by early next-generation sequencing based genotyping[J/OL]. Sci. Rep., 2023, 13(1): 1491[2023-01-27]. . |
36 | GUO D G, WANG D B, LIU C, et al.. CRISPR-based genomic loci labeling revealed ordered spatial organization of chromatin in living diploid human cells[J/OL]. Biochim. Biophys. Acta Mol. Cell Res., 2019, 1866(12): 118518[2019-07-31]. . |
37 | BIKARD D, JIANG W Y, SAMAI P, et al.. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system[J]. Nucl. Acids Res., 2013, 41(15): 7429-7437. |
38 | ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al.. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J/OL]. Science, 2016, 353(6299): aaf5573[2016-08-05]. . |
39 | KONERMANN S, LOTFY P, BRIDEAU N J, et al.. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors[J]. Cell, 2018, 173(3): 665-676. |
40 | JING X, XIE B R, CHEN L X, et al.. Implementation of the CRISPR-Cas13a system in fission yeast and its repurposing for precise RNA editing[J/OL]. Nucl. Acids Res., 2018, 46(15): e90[2018-05-31]. . |
41 | AMAN R, ALI Z, BUTT H, et al.. RNA virus interference via CRISPR/Cas13a system in plants[J/OL]. Genome Biol., 2018, 19(1): 1[2018-01-04]. . |
42 | ANDERSON J L, MULLIGAN T S, SHEN M C, et al.. mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay[J/OL]. PLoS Genet., 2017, 13(11): e1007105[2017-11-21]. . |
43 | MOU H W, SMITH J L, PENG L T, et al.. CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion[J/OL]. Genome Biol., 2017, 18(1): 108[2017-06-14]. . |
44 | EL-BROLOSY M A, KONTARAKIS Z, ROSSI A, et al.. Genetic compensation triggered by mutant mRNA degradation[J]. Nature, 2019, 568(7751): 193-197. |
45 | MA Z P, ZHU P P, SHI H, et al.. PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components[J]. Nature, 2019, 568(7751): 259-263. |
46 | TAKASUGI P R, WANG S Z, TRUONG K T, et al.. Orthogonal CRISPR-Cas tools for genome editing, inhibition, and CRISPR recording in zebrafish embryos[J/OL]. Genetics, 2022, 220(1): iyab196[2022-01-04]. . |
47 | KIM B H, ZHANG G J. Generating stable knockout zebrafish lines by deleting large chromosomal fragments using multiple gRNAs[J]. G3-Genes Genom. Genet., 2020, 10(3): 1029-1037. |
48 | SHIRAKI T, KAWAKAMI K. A tRNA-based multiplex sgRNA expression system in zebrafish and its application to generation of transgenic albino fish[J/OL]. Sci. Rep., 2018, 8(1): 13366[2018-09-06]. . |
49 | WU R S, LAM I I, CLAY H, et al.. A rapid method for directed gene knockout for screening in G0 zebrafish[J]. Dev. Cell, 2018, 46(1): 112-125. |
50 | KAWAHARA G, KARPF J A, MYERS J A, et al.. Drug screening in a zebrafish model of Duchenne muscular dystrophy[J]. Proc. Natl. Acad. Sci. USA, 2011, 108(13): 5331-5336. |
51 | WEBER T, KÖSTER R. Genetic tools for multicolor imaging in zebrafish larvae[J]. Methods, 2013, 62(3): 279-291. |
52 | EDWARDS J J, ROUILLARD A D, FERNANDEZ N F, et al.. Systems analysis implicates WAVE2 complex in the pathogenesis of developmental left-sided obstructive heart defects[J]. JACC-Basic Transl. Sci., 2020, 5(4): 376-386. |
53 | HUANG M M, AKERBERG A A, ZHANG X R, et al.. Intrinsic myocardial defects underlie an Rbfox-deficient zebrafish model of hypoplastic left heart syndrome[J/OL]. Nat. Commun., 2022, 13(1): 5877[2022-10-05]. . |
54 | HODOROVICH D R, LINDSLEY P M, BERRY A A, et al.. Morphological and sensorimotor phenotypes in a zebrafish CHARGE syndrome model are domain-dependent[J/OL]. Genes Brain Behav., 2023: e12839[2023-03-14]. . |
55 | GABELLINI C, PUCCI C, DE CESARI C, et al.. CRISPR/Cas9-induced inactivation of the Autism-risk gene setd5 leads to social impairments in zebrafish[J/OL]. Int. J. Mol. Sci., 2023, 24(1): 167[2022-12-22]. . |
56 | WHEELER M A, JARONEN M, COVACU R, et al.. Environmental control of astrocyte pathogenic activities in CNS inflammation[J]. Cell, 2019, 176(3): 581-596. |
57 | DOUDNA J A, CHARPENTIER E. The new frontier of genome engineering with CRISPR-Cas9[J/OL]. Science, 2014, 346(6213): 1258096[2014-11-28]. . |
58 | COTTERELL J, VILA-CEJUDO M, BATLLE-MORERA L, et al.. Endogenous CRISPR/Cas9 arrays for scalable whole-organism lineage tracing[J/OL]. Development, 2020, 147(9): dev184481[2023-03-14]. . |
59 | MCKENNA A, FINDLAY G M, GAGNON J A, et al.. Whole-organism lineage tracing by combinatorial and cumulative genome editing[J/OL]. Science, 2016, 353(6298): aaf7907[2016-07-29]. . |
60 | ALEMANY A, FLORESCU M, BARON C S, et al.. Whole-organism clone tracing using single-cell sequencing[J]. Nature, 2018, 556(7699): 108-112. |
[1] | 盖思宇, 陈子奇, 夏涵超, 赵仁贵, 刘相国. 基因编辑技术在植物启动子编辑中的研究进展[J]. 生物技术进展, 2023, 13(3): 321-328. |
[2] | 孙卉, 张春义, 姜凌. 药用植物分子农场研究进展[J]. 生物技术进展, 2023, 13(1): 65-71. |
[3] | 杨洋, 王凤林, 刘德, 罗园园, 朱建华. CRISPR⁃Cas9技术在植物次生代谢物生产中的研究进展[J]. 生物技术进展, 2022, 12(6): 806-816. |
[4] | 于鲲, 薛佳琪, 王进宽, 余永涛. CRISPR/Cas9基因编辑技术在丝状真菌中的应用[J]. 生物技术进展, 2022, 12(5): 696-704. |
[5] | 高维崧, 窦金萍, 韦双, 刘兴健, 张志芳, 李轶女. CRISPR/Cas系统的分类及研究现状[J]. 生物技术进展, 2022, 12(4): 532-538. |
[6] | 党星, 郅斌伟, 曹克浩, 刘婷婷, 陈飚, 丁远杰. 转基因玉米生物育种技术的专利分析及产业发展建议[J]. 生物技术进展, 2022, 12(4): 614-622. |
[7] | 费云燕, 杨军, 景德道, 林添资, 李闯, 钱华飞, 曾生元, 韩华新, 龚红兵. CRISPR/Cas技术在抗除草剂作物育种中的研究与应用进展[J]. 生物技术进展, 2022, 12(2): 189-197. |
[8] | 黄耀辉, 王艺洁, 杨立桃, 焦悦, 付仲文. 生物育种新技术作物的安全管理[J]. 生物技术进展, 2022, 12(2): 198-204. |
[9] | 曹巧, 史占良, 张国丛, 班进福, 郑树松, 傅晓艺, 张士昌, 何明琦, 韩然, 高振贤. CRISPR/Cas9技术在小麦育种中的应用进展[J]. 生物技术进展, 2021, 11(6): 661-667. |
[10] | 林敏. 农业生物育种技术的发展历程及产业化对策[J]. 生物技术进展, 2021, 11(4): 405-417. |
[11] | 谢宇宙, 付伟, 闫超杰, 王智, 朱鹏宇, 任永超, 张永江, 相宁. 基于CRISPR/Cas原理的转基因产品检测技术研究进展[J]. 生物技术进展, 2021, 11(4): 430-437. |
[12] | 王梦雨, 王颢潜, 王旭静, 王志兴. 基因编辑产品检测技术研究进展[J]. 生物技术进展, 2021, 11(4): 438-445. |
[13] | 权春菊, 郑忠亮. CRISPR/Cas及其衍生编辑技术在基因治疗中的应用进展[J]. 生物技术进展, 2021, 11(4): 518-525. |
[14] | 格日乐其木格, 牛振峰, 董丹, 张涛涛, 峥嵘. CRISPR-Cas系统在微生物研究中的应用进展[J]. 生物技术进展, 2021, 11(3): 253-259. |
[15] | 曹豪豪,张红兵,薛溪发,李左群,闫洪波,李会宣. 新型基因编辑技术在单细胞微藻中的应用进展[J]. 生物技术进展, 2021, 11(1): 9-15. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部