生物技术进展 ›› 2021, Vol. 11 ›› Issue (4): 518-525.DOI: 10.19586/j.2095-2341.2020.0144
收稿日期:
2020-11-06
接受日期:
2021-03-04
出版日期:
2021-07-25
发布日期:
2021-08-02
通讯作者:
郑忠亮
作者简介:
权春菊 E-mail:1096150987@qq.com;
基金资助:
Chunju QUAN(), Zhongliang ZHENG(
)
Received:
2020-11-06
Accepted:
2021-03-04
Online:
2021-07-25
Published:
2021-08-02
Contact:
Zhongliang ZHENG
摘要:
基因治疗是指利用基因编辑技术对细胞基因进行“修饰”而达到治疗的目的。CRISPR/Cas的出现为基因编辑提供了简单、高效和多功能的平台,同时,为克服DNA双链断裂产生的不良影响,基于CRISPR/Cas的新型技术,如碱基编辑器(base editors,BE)、Prime Editors(PE)和Cas13效应器,被相继开发出来。目前,CRISPR/Cas及其衍生编辑技术已被广泛应用于动物细胞模型构建、药物靶点筛查和基因功能研究等领域,在基因治疗领域也展现出广阔的应用前景。基于此,简要介绍了CRISPR/Cas及其衍生编辑技术,综述了其在单基因遗传病、肿瘤和其他疾病的基因治疗中的应用进展,并分析了其当下面临的挑战,以期为基因编辑在单基因遗传病、肿瘤和其他疾病治疗领域提供理论参考。
中图分类号:
权春菊, 郑忠亮. CRISPR/Cas及其衍生编辑技术在基因治疗中的应用进展[J]. 生物技术进展, 2021, 11(4): 518-525.
Chunju QUAN, Zhongliang ZHENG. Application Progress of CRISPR/Cas and its Derivative Editing Technology in Gene Therapy[J]. Current Biotechnology, 2021, 11(4): 518-525.
1 | DOUDNA J A. The promise and challenge of therapeutic genome editing[J]. Nature, 2020, 578(7794): 229-236. |
2 | TAMAS L, YANG D, WALDMAN A S. Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI [J]. Nucl. Acids Res., 1994, 22(25): 5649-5657. |
3 | WYMAN C, KANAAR R. DNA double-strand break repair: all's well that ends well [J]. Annu. Rev. Genet., 2006, 40(1):363-383. |
4 | URNOV F D, REBAR E J, HOLMES M C, et al.. Genome editing with engineered zinc finger nucleases[J]. Nat. Rev. Genet., 2010, 11(9): 636-646. |
5 | JOUNG J K, SANDER J D. TALENs: a widely applicable technology for targeted genome editing [J]. Nat. Rev. Mol. Cell Biol., 2012, 14(1): 49-55. |
6 | CHO S W, KIM S, KIM J M, et al.. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease [J]. Nat. Biotechnol., 2013, 31(3): 230-232. |
7 | CONG L, RAN F A, COX D M, et al.. Multiplex genome engineering using CRISPR/Cas systems [J]. Science, 2013, 339(6121): 819-823. |
8 | MALI P, YANG L H, ESVELT K M, et al.. RNA-guided human genome engineering via Cas9 [J]. Science, 2013, 339(6121): 823-826. |
9 | MAKAROVA K S, WOLF Y I, ALKHNBASHI O S, et al.. An updated evolutionary classification of CRISPR-Cas systems [J]. Nat. Rev. Microbiol., 2015, 13(11): 722-736. |
10 | MOHANRAJU P, MAKAROVA K S, ZETSCHE B, et al.. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems [J/OL]. Science, 2016, 353(6299): aad5147[2021-06-04]. . DOI: 10.1126/science.aad5147 . |
11 | ZEBALLOS C M A, GAJ T. Next-generation CRISPR technologies and their applications in gene and cell therapy [J/OL]. Trends Biotechnol., 2020, 1: S0167-7799(20)30287-0[2021-06-04]. . |
12 | WANG F, WANG L, ZOU X, et al.. Advances in CRISPR-Cas systems for RNA targeting, tracking and editing[J]. Biotechnol. Adv., 2019, 37(5): 708-729. |
13 | 任云晓, 肖茹丹, 娄晓敏, 等. 基因编辑技术及其在基因治疗中的应用[J]. 遗传, 2019, 41(1): 18-27. |
14 | JINEK M, CHYLINSKI K, FONFARA I, et al.. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity [J]. Science, 2012, 337(6096): 816-821. |
15 | KOMOR A C, KIM Y B, PACKER M S, et al.. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage [J]. Nature, 2016, 533(7603): 420-424. |
16 | NISHIDA K, ARAZOE T, YACHIE N, et al.. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems [J/OL]. Science, 2016, 353(6305): aaf8729[2021-06-04]. . DOI: 10.1126/science.aaf8729 . |
17 | GAUDELLI N M, KOMOR A C, REES H A, et al.. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage [J]. Nature, 2017, 551(7681): 464-471. |
18 | ANZALONE A V, RANDOLPH P B, DAVIS J R, et al.. Search-and-replace genome editing without double-strand breaks or donor DNA [J]. Nature, 2019, 576(7785): 149-157. |
19 | YEH W H, CHIANG H, REES H A, et al.. In vivo base editing of post-mitotic sensory cells [J/OL]. Nat. Commun., 2018, 9(1): 2184[2021-06-04]. . |
20 | VILLIGER L, GRISCH-CHAN H M, LINDSAY H, et al.. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice [J]. Nat. Med., 2018, 24(10): 1519-1525. |
21 | LEVY J M, YEH W H, PENDSE N, et al.. Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses [J]. Nat. Biomed. Eng., 2020, 4(1): 97-110. |
22 | LIM C K W, GAPINSKE M, BROOKS A K, et al.. Treatment of a mouse model of ALS by in vivo base editing [J]. Mol. Ther., 2020, 28(4): 1177-1189. |
23 | WINTER J, LUU A, GAPINSKE M, et al.. Targeted exon skipping with AAV-mediated split adenine base editors [J/OL]. Cell Discov., 2019, 5:41[2021-06-04]. . |
24 | ABUDAYYEH O O, GOOTENBERG J S, ESSLETZBICHLER P, et al.. RNA targeting with CRISPR-Cas13 [J]. Nature, 2017, 550(7675): 280-284. |
25 | ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al.. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector [J/OL]. Science, 2016, 353(6299): aaf5573[2021-06-04]. . DOI: 10.1126/science.aaf5573 . |
26 | EAST-SELETSKY A, O'CONNELL M R, KNIGHT S C, et al.. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection [J]. Nature, 2016, 538(7624): 270-273. |
27 | MEESKE A J, NAKANDAKARI-HIGA S, MARRAFFINI L A. Cas13-induced cellular dormancy prevents the rise of CRISPR-resistant bacteriophage [J]. Nature, 2019, 570(7760): 241-245. |
28 | SMARGON A A, COX D B T, PYZOCHA N K, et al.. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28 [J]. Mol. Cell, 2017, 65(4):618-630. |
29 | PARK S H, LEE C M, DEVER D P, et al.. Highly efficient editing of the beta-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease [J]. Nucleic Acids Res., 2019, 47(15): 7955-7972. |
30 | KALKAN B M, KALA E Y, YUCE M, et al.. Development of gene editing strategies for human beta-globin (HBB) gene mutations [J/OL]. Gene, 2020, 734:144398[2021-06-04]. . |
31 | DEVER D P, BAK R O, REINISCH A, et al.. CRISPR/Cas9 beta-globin gene targeting in human haematopoietic stem cells [J]. Nature, 2016, 539(7629): 384-389. |
32 | KOSICKI M, TOMBERG K, BRADLEY A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements [J]. Nat. Biotechnol., 2018, 36(8): 765-771. |
33 | RYU S M, KOO T, KIM K, et al.. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy [J]. Nat. Biotechnol., 2018, 36(6): 536-539. |
34 | REN J, ZHAO Y. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9 [J]. Protein Cell, 2017, 8(9): 634-643. |
35 | ZHAO J, LIN Q, SONG Y, et al.. Universal CARs, cellsuniversal T, and universal CAR T cells [J/OL]. J. Hematol. Oncol., 2018, 11(1): 132[2021-06-04]. . |
36 | LU Y, XUE J, DENG T, et al.. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer [J]. Nat. Med., 2020, 26(5): 732-740. |
37 | LIU D, ZHAO X, TANG A, et al.. CRISPR screen in mechanism and target discovery for cancer immunotherapy [J/OL]. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(1): 188378[2021-06-04]. . |
38 | CYRANOSKI D. Chinese scientists to pioneer first human CRISPR trial [J]. Nature, 2016, 535(7613): 476-477. |
39 | CYRANOSKI D. CRISPR gene-editing tested in a person for the first time [J]. Nature, 2016, 539(7630): 479. |
40 | STADTMAUER E A, FRAIETTA J A, DAVIS M M, et al.. CRISPR-engineered T cells in patients with refractory cancer [J/OL]. Science, 2020, 367(6481):eaba7365[2021-06-04]. . DOI: 10.1126/science.aba7365 . |
41 | ZAFRA M P, SCHATOFF E M, KATTI A, et al.. Optimized base editors enable efficient editing in cells, organoids and mice [J]. Nat. Biotechnol., 2018, 36(9): 888-893. |
42 | ZHAO X, LIU L, LANG J, et al.. A CRISPR-Cas13a system for efficient and specific therapeutic targeting of mutant KRAS for pancreatic cancer treatment [J]. Cancer Lett., 2018, 431:171-181. |
43 | WANG E, ZHOU H, NADORP B, et al.. Surface antigen-guided CRISPR screens identify regulators of myeloid leukemia differentiation [J]. Cell Stem Cell, 2021, 28(4):718-731. |
44 | ZHU W, XIE K, XU Y, et al.. CRISPR/Cas9 produces anti-hepatitis B virus effect in hepatoma cells and transgenic mouse [J]. Virus Res., 2016, 217:125-132. |
45 | ROSSIDIS A C, STRATIGIS J D, CHADWICK A C, et al.. In utero CRISPR-mediated therapeutic editing of metabolic genes [J]. Nat. Med., 2018, 24(10): 1513-1518. |
46 | ZHANG X, ZHAO W, NGUYEN G N, et al.. Functionalized lipid-like nanoparticles for in vivo mRNA delivery and base editing [J/OL]. Sci. Adv., 2020, 6(34):eabc2315[2021-06-04]. . DOI: 10.1126/sciadv.abc2315 . |
47 | CHADWICK A C, WANG X, MUSUNURU K. In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing [J]. Arterioscler. Thromb. Vasc. Biol., 2017, 37(9): 1741-1747. |
48 | ZHOU H, SU J, HU X, et al.. Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice [J]. Cell, 2020, 181(3): 590-603. |
49 | KOBLAN L W, DOMAN J L, WILSON C, et al.. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction [J]. Nat. Biotechnol., 2018, 36(9): 843-846. |
50 | LIANG P, XIE X, ZHI S, et al.. Genome-wide profiling of adenine base editor specificity by EndoV-seq [J/OL]. Nat. Commun., 2019, 10(1): 67[2021-06-04]. . |
51 | REES H A, KOMOR A C, YEH W H, et al.. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery [J/OL]. Nat. Commun., 2017, 8(1):15790[2021-06-04]. . |
52 | GRüNEWALD J, ZHOU R, GARCIA S P, et al.. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors [J]. Nature, 2019, 569(7756): 433-437. |
53 | JIANG W, FENG S, HUANG S, et al.. BE-PLUS: a new base editing tool with broadened editing window and enhanced fidelity [J]. Cell Res., 2018, 28(8): 855-861. |
54 | GAUDELLI N M, LAM D K, REES H A, et al.. Directed evolution of adenine base editors with increased activity and therapeutic application [J]. Nat. Biotechnol., 2020, 38(7): 892-900. |
55 | ZHANG X, CHEN L, ZHU B, et al.. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain [J]. Nat. Cell Biol., 2020, 22(6): 740-750. |
56 | JVAN HAASTEREN, LI J, SCHEIDELER O J, et al.. The delivery challenge: fulfilling the promise of therapeutic genome editing [J]. Nat. Biotechnol., 2020, 38(7): 845-855. |
57 | MENDELL J R, AL-ZAIDY S, SHELL R, et al.. Single-dose gene-replacement therapy for spinal muscular atrophy [J]. N. Engl. J. Med., 2017, 377(18): 1713-1722. |
58 | Goldschmidt D, Scutti S. FDA approves gene therapy for a type of blindness[EB/OL]. (2017-12-21) [2021-06-29]. . |
59 | ALANIS-LOBATO G, ZOHREN J, MCCARTHY A, et al.. Frequent loss-of-heterozygosity in CRISPR-Cas9-edited early human embryos [J/OL]. Proc. Natl. Acad. Sci. USA, 2021, 118(22): e2004832117 [2021-06-04]. . |
60 | ZUCCARO M V, XU J, MITCHELL C, et al.. Reading frame restoration at the EYS locus, and allele-specific chromosome removal after Cas9 cleavage in human embryos [J]. Cell, 2020, 183(6):1650-1664. |
61 | CHARLESWORTH C T, DESHPANDE P S, DEVER D P, et al.. Identification of preexisting adaptive immunity to Cas9 proteins in humans [J]. Nat. Med., 2019, 25(2): 249-254. |
[1] | 于鲲, 薛佳琪, 王进宽, 余永涛. CRISPR/Cas9基因编辑技术在丝状真菌中的应用[J]. 生物技术进展, 2022, 12(5): 696-704. |
[2] | 高维崧, 窦金萍, 韦双, 刘兴健, 张志芳, 李轶女. CRISPR/Cas系统的分类及研究现状[J]. 生物技术进展, 2022, 12(4): 532-538. |
[3] | 费云燕, 杨军, 景德道, 林添资, 李闯, 钱华飞, 曾生元, 韩华新, 龚红兵. CRISPR/Cas技术在抗除草剂作物育种中的研究与应用进展[J]. 生物技术进展, 2022, 12(2): 189-197. |
[4] | 李书翔, 安丽萍, 梁德娟, 王凯旋, 赵建国. 朊病毒病治疗方法的研究进展[J]. 生物技术进展, 2022, 12(2): 229-235. |
[5] | 曹巧, 史占良, 张国丛, 班进福, 郑树松, 傅晓艺, 张士昌, 何明琦, 韩然, 高振贤. CRISPR/Cas9技术在小麦育种中的应用进展[J]. 生物技术进展, 2021, 11(6): 661-667. |
[6] | 谢宇宙, 付伟, 闫超杰, 王智, 朱鹏宇, 任永超, 张永江, 相宁. 基于CRISPR/Cas原理的转基因产品检测技术研究进展[J]. 生物技术进展, 2021, 11(4): 430-437. |
[7] | 曹豪豪,张红兵,薛溪发,李左群,闫洪波,李会宣. 新型基因编辑技术在单细胞微藻中的应用进展[J]. 生物技术进展, 2021, 11(1): 9-15. |
[8] | 杜梦潭,刘兴健,胡小元,张志芳,李轶女. 腺相关病毒的生产方式及其在基因治疗中的应用[J]. 生物技术进展, 2019, 9(4): 326-331. |
[9] | 郑红艳,王磊. CRISPR/Cas基因编辑技术及其在作物育种中的应用[J]. 生物技术进展, 2018, 8(3): 185-190. |
[10] | 吕宝北,赵鹏翔,张鑫,马雪梅,谢飞. CRISPR/Cas9在肿瘤治疗中的研究进展[J]. 生物技术进展, 2018, 8(3): 191-196. |
[11] | 王友华,邹婉侬,康宇立,唐巧玲,孙国庆. CRISPR/Cas系统研发进展及展望[J]. 生物技术进展, 2017, 7(6): 594-600. |
[12] | 汪超甲,王辉,胡钧涛,胡胜利,张宇强,成于思,雷尚国. CRISPR/Cas9敲除pyk2基因对人脑胶质瘤细胞增殖、迁移及侵袭能力的影响[J]. 生物技术进展, 2017, 7(4): 338-344. |
[13] | 赵丽琴,席斌,彭华松. 腺相关病毒(AAV)载体研究进展[J]. 生物技术进展, 2012, 2(2): 110-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部