1 |
CHAKRABORTY C, TEOH S L, DAS S. The smart programmable CRISPR technology: a next generation genome editing tool for investigators[J]. Curr. Drug Targets, 2017, 18(14): 1653-1663.
|
2 |
MANGHWAR H, LINDSEY K, ZHANG X,et al.. CRISPR/Cas system: recent advances and future prospects for genome editing[J]. Trends Plant Sci., 2019, 24(12): 1102-1125.
|
3 |
GAJ T, GERSBACH C A, BARBAS C F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends Biotechnol., 2013, 31(7): 397-405.
|
4 |
DOYON Y, VO T D, MENDEL M C, et al.. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures[J]. Nat. Meth., 2011, 8: 74-79.
|
5 |
CHRISTIAN M, CERMAK T, DOYLE E L, et al.. Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics, 2010, 186(2): 757-761.
|
6 |
TYUMENTSEVA M, TYUMENTSEV A, AKIMKIN V. CRISPR/Cas9 landscape: current state and future perspectives[J/OL]. Int. J. Mol. Sci., 2023, 24(22): 16077[2024-12-30]. .
|
7 |
BANAN M. Recent advances in CRISPR/Cas9-mediated knock-ins in mammalian cells[J]. J. Biotechnol., 2020, 308: 1-9.
|
8 |
KOO T, YOON A R, CHO H Y, et al.. Selective disruption of an oncogenic mutant allele by CRISPR/Cas9 induces efficient tumor regression[J]. Nucleic Acids Res., 2017, 45(13): 7897-7908.
|
9 |
HECKL D, KOWALCZYK M S, YUDOVICH D, et al.. Generation of mouse models of myeloid malignancy with combinatorial genetic lesions using CRISPR-Cas9 genome editing[J]. Nat. Biotechnol., 2014, 32: 941-946.
|
10 |
HEYZA J R, LEI W, WATZA D, et al.. Identification and characterization of synthetic viability with ERCC1 deficiency in response to interstrand crosslinks in lung cancer[J]. Clin. Cancer Res., 2019, 25(8): 2523-2536.
|
11 |
MUKHERJEE A, CHIANG C Y, DAIFOTIS H A, et al.. Adipocyte-induced FABP4 expression in ovarian cancer cells promotes metastasis and mediates carboplatin resistance[J]. Cancer Res., 2020, 80(8): 1748-1761.
|
12 |
LUIS G, GODFROID A, NISHIUMI S, et al.. Tumor resistance to ferroptosis driven by stearoyl-CoA desaturase-1 (SCD1) in cancer cells and fatty acid biding protein-4 (FABP4) in tumor microenvironment promote tumor recurrence[J/OL]. Redox Biol., 2021, 43: 102006[2024-12-30]. .
|
13 |
KOUJAH L, SHUKLA D, NAQVI A R. CRISPR-Cas based targeting of host and viral genes as an antiviral strategy[J]. Semin. Cell Dev. Biol., 2019, 96: 53-64.
|
14 |
YIN L, HU S, MEI S, et al.. CRISPR/Cas9 inhibits multiple steps of HIV-1 infection[J]. Hum. Gene Ther., 2018, 29(11): 1264-1276.
|
15 |
LIU S, WANG Q K, YU X, et al.. HIV-1 inhibition in cells with CXCR4 mutant genome created by CRISPR-Cas9 and piggyBac recombinant technologies[J/OL]. Sci. Rep., 2018, 8: 8573[2024-12-30]..
|
16 |
SCOTT T, MOYO B, NICHOLSON S, et al.. ssAAVs containing cassettes encoding SaCas9 and guides targeting hepatitis B virus inactivate replication of the virus in cultured cells[J/OL]. Sci. Rep., 2017, 7: 7401[2024-12-30]. .
|
17 |
WOLLEBO H S, BELLIZZI A, KAMINSKI R, et al.. CRISPR/Cas9 system as an agent for eliminating polyomavirus JC infection[J/OL]. PLoS ONE, 2015, 10(9): e0136046[2024-12-30]. .
|
18 |
PARK C Y, KIM D H, SON J S, et al.. Functional correction of large factor Ⅷ gene chromosomal inversions in hemophilia A patient-derived iPSCs using CRISPR-Cas9[J]. Cell Stem Cell, 2015, 17(2): 213-220.
|
19 |
WANG L L, YANG Y, BRETON C A, et al.. CRISPR/Cas9-mediated in vivo gene targeting corrects hemostasis in newborn and adult factor IX-knockout mice[J]. Blood, 2019, 133(26): 2745-2752.
|
20 |
MORROW G, TANGUAY R M. Biochemical and clinical aspects of hereditary tyrosinemia type 1[J]. Adv. Exp. Med. Biol., 2017, 959: 9-21.
|
21 |
YIN H, XUE W, CHEN S D, et al.. Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype[J]. Nat. Biotechnol., 2014, 32: 551-553.
|
22 |
VANLITH C, GUTHMAN R, NICOLAS C T, et al.. Curative ex vivo hepatocyte-directed gene editing in a mouse model of hereditary tyrosinemia type 1[J]. Hum. Gene Ther., 2018, 29(11): 1315-1326.
|
23 |
SHAO Y J, WANG L R, GUO N N, et al.. Cas9-nickase-mediated genome editing corrects hereditary tyrosinemia in rats[J]. J. Biol. Chem., 2018, 293(18): 6883-6892.
|
24 |
ALERASOOL N, SEGAL D, LEE H S, et al.. An efficient KRAB domain for CRISPRi applications in human cells[J]. Nat. Meth., 2020, 17: 1093-1096.
|
25 |
DOMINGUEZ A A, LIM W A, QI L S. Beyond editing:repurposing CRISPR-Cas9 for precision genome regulation and interrogation[J]. Nat. Rev. Mol. Cell Biol., 2016, 17: 5-15.
|
26 |
QI L S, LARSON M H, GILBERT L A, et al.. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression[J]. Cell, 2013, 152(5): 1173-1183.
|
27 |
ZHANG Z M, LU R, WANG P C, et al.. Structural basis for DNMT3A-mediated de novo DNA methylation[J]. Nature, 2018, 554: 387-391.
|
28 |
VOJTA A, DOBRINIć P, TADIć V, et al.. Repurposing the CRISPR-Cas9 system for targeted DNA methylation[J]. Nucleic Acids Res., 2016, 44(12): 615-628.
|
29 |
VOJTA A, DOBRINIĆ P, TADIĆ V, et al.. Repurposing the CRISPR-Cas9 system for targeted DNA methylation[J]. Nucleic Acids Res., 2016, 44(12): 5615-5628.
|
30 |
QU J, ZHU L, ZHOU Z, et al.. Reversing mechanoinductive DSP expression by CRISPR/dCas9-mediated epigenome editing[J]. Am. J. Respir. Crit. Care Med., 2018, 198(5): 599-609.
|
31 |
RAD F T, GARGARI B N, GHORBIAN S, et al.. Inhibiting the growth of melanoma cells via hTERT gene editing using CRISPR-dCas9-dnmt3a system[J/OL]. Gene, 2022, 828: 146477[2025-01-10]. .
|
32 |
WU J X, HE K S, ZHANG Y J, et al.. Inactivation of SMARCA2 by promoter hypermethylation drives lung cancer development[J]. Gene, 2019, 687: 193-199.
|
33 |
DAS S, BANO S, KAPSE P, et al.. CRISPR based therapeutics: a new paradigm in cancer precision medicine[J/OL]. Mol. Cancer, 2022, 21(1): 85[2024-12-30]. .
|
34 |
SAAYMAN S M, LAZAR D, SCOTT T, et al.. Potent and targeted activation of latent HIV-1 using the CRISPR/dCas9 activator complex[J]. Mol. Ther., 2016, 4(3): 488-498.
|
35 |
SANO T, ITO T, ISHIGAMI S, et al.. Intrinsic activation of cardiosphere-derived cells enhances myocardial repair[J]. J. Thorac. Cardiovasc. Surg., 2022, 163(4): 1479-1490.
|
36 |
CYRANOSKI D. CRISPR gene-editing tested in a person for the first time[J]. Nature, 2016, 539(7630): 479.
|
37 |
LU Y, XUE J X, DENG T, et al.. Safety and feasibility of CRISPR-edited T cells in patients with refractory non-small-cell lung cancer[J]. Nat. Med., 2020, 26: 732-740.
|
38 |
PARDEE K, GREEN A A, TAKAHASHI M K, et al.. Rapid, low-cost detection of zika virus using programmable biomolecular components[J]. Cell, 2016, 165(5): 1255-1266.
|
39 |
HUANG M Q, ZHOU X M, WANG H Y, et al.. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection[J]. Anal. Chem., 2018, 90(3): 2193-2200.
|
40 |
TEBOUL L, HERAULT Y, WELLS S, et al.. Variability in genome editing outcomes:challenges for research reproducibility and clinical safety[J]. Mol. Ther., 2020, 28(6): 1422-1431.
|
41 |
WANG X L, WANG Y B, WU X W, et al.. Unbiased detection of off-target cleavage by CRISPR-Cas9 and TALENs using integrase-defective lentiviral vectors[J]. Nat. Biotechnol., 2015, 33: 175-178.
|
42 |
CHEW W L, TABEBORDBAR M, CHENG J K W, et al.. A multifunctional AAV-CRISPR-Cas9 and its host response[J]. Nat. Meth., 2016, 13: 868-874.
|
43 |
LI H Y, YANG Y, HONG W Q, et al.. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects[J/OL]. Signal Transduct. Target. Ther., 2020, 5: 1[2024-12-30]. .
|
44 |
BERARDO C, SICILIANO V, DI PASQUA LG, et al.. Comparison between lipofectamine RNAiMAX and GenMute transfection agents in two cellular models of human hepatoma[J/OL]. Eur. J. Histochem., 2019, 63(3): 3048[2024-12-30]. .
|
45 |
COLLIAS D, BEISEL C L. CRISPR technologies and the search for the PAM-free nuclease[J/OL]. Nat. Commun., 2021, 12: 555[2024-12-30]. .
|
46 |
ANDERS C, NIEWOEHNER O, DUERST A, et al.. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease[J]. Nature, 2014, 513: 569-573.
|
47 |
权春菊,郑忠亮.CRISPR/Cas及其衍生编辑技术在基因治疗中的应用进展[J].生物技术进展,2021,11(4):518-525.
|
|
QUAN C J, ZHENG Z L. Application progress of CRISPR/Cas and its derivative editing technology in gene therapy[J]. Curr. Biotechnol., 2021, 11(4): 518-525.
|