1 |
STOLTZ D A, MEYERHOLZ D K, WELSH M J. Origins of cystic fibrosis lung disease[J]. N. Engl. J. Med., 2015, 372(16): 1574-1575.
|
2 |
GRIESENBACH U, DAVIES J C, ALTON E. Cystic fibrosis gene therapy: a mutation-independent treatment[J]. Curr. Opin. Pulm. Med., 2016, 22(6): 602-609.
|
3 |
ENSINCK M M, CARLON M S. One size does not fit all: the past, present and future of cystic fibrosis causal therapies[J/OL]. Cells, 2022, 11(12): 1868[2024-07-22]. .
|
4 |
DRUMM M L, POPE H A, CLIFF W H, et al.. Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer[J]. Cell, 1990, 62(6): 1227-1233.
|
5 |
JOHNSON L G, OLSEN J C, SARKADI B, et al.. Efficiency of gene transfer for restoration of normal airway epithelial function in cystic fibrosis[J]. Nat. Genet., 1992, 2(1): 21-25.
|
6 |
ZABNER J, COUTURE L A, GREGORY R J, et al.. Adenovirus-mediated gene transfer transiently corrects the chloride transport defect in nasal epithelia of patients with cystic fibrosis[J]. Cell, 1993, 75(2): 207-216.
|
7 |
JOSEPH P M, O'SULLIVAN B P, LAPEY A, et al.. Aerosol and lobar administration of a recombinant adenovirus to individuals with cystic fibrosis. I. methods, safety, and clinical implications[J]. Hum. Gene Ther., 2001, 12(11): 1369-1382.
|
8 |
GUGGINO W B, CEBOTARU L. Adeno-associated virus (AAV) gene therapy for cystic fibrosis: current barriers and recent developments[J]. Expert Opin. Biol. Ther., 2017, 17(10): 1265-1273.
|
9 |
FLOTTE T R. Size does matter: overcoming the adeno-associated virus packaging limit[J]. Respir. Res., 2000, 1(1): 16-18.
|
10 |
ALTON E W F W, ARMSTRONG D K, ASHBY D, et al.. Repeated nebulisation of non-viral CFTR gene therapy in patients with cystic fibrosis: a randomised, double-blind, placebo-controlled, phase 2b trial[J]. Lancet Respir. Med., 2015, 3(9): 684-691.
|
11 |
CECCALDI R, RONDINELLI B, D'ANDREA A D. Repair pathway choices and consequences at the double-strand break[J]. Trends Cell Biol., 2016, 26(1): 52-64.
|
12 |
LIEBER M R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway[J]. Annu. Rev. Biochem., 2010, 79: 181-211.
|
13 |
PAQUET D, KWART D, CHEN A, et al.. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9[J]. Nature, 2016, 533(7601): 125-129.
|
14 |
BÉTERMIER M, BERTRAND P, LOPEZ B S. Is non-homologous end-joining really an inherently error-prone process?[J/OL]. PLoS Genet., 2014, 10(1): e1004086[2024-07-22]. .
|
15 |
DHEYER W, EHMSEN K T, LIU J. Regulation of homologous recombination in eukaryotes[J]. Annu. Rev. Genet., 2010, 44: 113-139.
|
16 |
FU Y, FODEN J A, KHAYTER C, et al.. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells[J]. Nat. Biotechnol., 2013, 31(9): 822-826.
|
17 |
KOBLAN L W, ARBAB M, SHEN M W, et al.. Efficient C·G-to-G·C base editors developed using CRISPRi screens, target-library analysis, and machine learning[J]. Nat. Biotechnol., 2021, 39(11): 1414-1425.
|
18 |
DOMAN J L, SOUSA A A, RANDOLPH P B, et al.. Designing and executing prime editing experiments in mammalian cells[J]. Nat. Protoc., 2022, 17(11): 2431-2468.
|
19 |
SCHWANK G, KKOO B, SASSELLI V, et al.. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients[J]. Cell Stem Cell, 2013, 13(6): 653-658.
|
20 |
YAN Z, VORHIES K, FENG Z, et al.. Recombinant adeno-associated virus-mediated editing of the G551D cystic fibrosis transmembrane conductance regulator mutation in ferret airway basal cells[J]. Hum. Gene Ther., 2022, 33(19-20): 1023-1036.
|
21 |
SANZ D J, HOLLYWOOD J A, SCALLAN M F, et al.. Cas9/gRNA targeted excision of cystic fibrosis-causing deep-intronic splicing mutations restores normal splicing of CFTR mRNA[J/OL]. PLoS ONE, 2017, 12(9): e0184009[2024-07-22]. .
|
22 |
SUZUKI K, TSUNEKAWA Y, HERNANDEZ-BENITEZ R, et al.. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration[J]. Nature, 2016, 540(7631): 144-149.
|
23 |
GEURTS M H, DE POEL E, AMATNGALIM G D, et al.. CRISPR-based adenine editors correct nonsense mutations in a cystic fibrosis organoid biobank[J]. Cell Stem Cell, 2020, 26(4): 503-510.
|
24 |
KRISHNAMURTHY S, TRAORE S, COONEY A L, et al.. Functional correction of CFTR mutations in human airway epithelial cells using adenine base editors[J]. Nucleic Acids Res., 2021, 49(18): 10558-10572.
|
25 |
GEURTS M H, POEL E D, PLEGUEZUELOS-MANZANO C, et al.. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids[J/OL]. Life Sci. Alliance, 2021, 4(10): e202000940[2024-07-22]. .
|
26 |
权春菊,郑忠亮.CRISPR/Cas及其衍生编辑技术在基因治疗中的应用进展[J].生物技术进展,2021,11(4):518-525.
|
|
QUAN C J, ZHENG Z L. Application progress of CRISPR/cas and its derivative editing technology in gene therapy[J]. Curr. Biotechnol., 2021, 11(4): 518-525.
|
27 |
CHU C S, TRAPNELL B C, CURRISTIN S M, et al.. Extensive posttranscriptional deletion of the coding sequences for part of nucleotide-binding fold 1 in respiratory epithelial mRNA transcripts of the cystic fibrosis transmembrane conductance regulator gene is not associated with the clinical manifestations of cystic fibrosis[J]. J. Clin. Investig., 1992, 90(3): 785-790.
|
28 |
JIANG Q, ENGELHARDT J F. Cellular heterogeneity of CFTR expression and function in the lung: implications for gene therapy of cystic fibrosis[J]. Eur. J. Hum. Genet., 1998, 6(1): 12-31.
|
29 |
DAVIS J D, WYPYCH T P. Cellular and functional heterogeneity of the airway epithelium[J]. Mucosal Immunol., 2021, 14(5): 978-990.
|
30 |
SHAH V S, CHIVUKULA R R, LIN B, et al.. Cystic fibrosis and the cells of the airway epithelium: what are ionocytes and what do they do?[J]. Annu. Rev. Pathol., 2022, 24(17): 23-46.
|
31 |
OKUDA K, DANG H, KOBAYASHI Y, et al.. Secretory cells dominate airway CFTR expression and function in human airway superficial epithelia[J]. Am. J. Respir. Crit. Care Med., 2021, 203(10): 1275-1289.
|
32 |
R-JSHEI, PEABODY J E, KAZA N, et al.. The epithelial sodium channel (ENaC) as a therapeutic target for cystic fibrosis[J]. Curr. Opin. Pharmacol., 2018, 43: 152-165.
|
33 |
WU D, BOUCHER R C, BUTTON B, et al.. An integrated mathematical epithelial cell model for airway surface liquid regulation by mechanical forces[J]. J. Theor. Biol., 2018, 438: 34-45.
|
34 |
YOSHIMURA K, NAKAMURA H, TRAPNELL B C, et al.. Expression of the cystic fibrosis transmembrane conductance regulator gene in cells of non-epithelial origin[J]. Nucleic Acids Res., 1991, 19(19): 5417-5423.
|
35 |
QUESADA R, DUTZLER R. Alternative chloride transport pathways as pharmacological targets for the treatment of cystic fibrosis[J]. J. Cyst. Fibros., 2020, 19(S1): 37-41.
|
36 |
BLACONÀ G, RASO R, CASTELLANI S, et al.. Downregulation of epithelial sodium channel (ENaC) activity in cystic fibrosis cells by epigenetic targeting[J/OL]. Cell. Mol. Life Sci., 2022, 79(5): 257[2024-07-22]. .
|
37 |
DEAN C H, SNELGROVE R J. New rules for club development: new insights into human small airway epithelial club cell ontogeny and function[J]. Am. J. Respir. Crit. Care Med., 2018, 198(11): 1355-1356.
|
38 |
DONNELLEY M, PARSONS D W. Gene therapy for cystic fibrosis lung disease: overcoming the barriers to translation to the clinic[J/OL]. Front. Pharmacol., 2018, 9: 1381[2024-07-22]. .
|
39 |
CMIELEWSKI P, DONNELLEY M, PARSONS D W. Long-term therapeutic and reporter gene expression in lentiviral vector treated cystic fibrosis mice[J]. J. Gene Med., 2014, 16(9-10): 291-299.
|
40 |
BOUTIN S, MONTEILHET V, VERON P, et al.. Prevalence of serum IgG and neutralizing factors against adeno-associated virus (AAV) types 1, 2, 5, 6, 8, and 9 in the healthy population: implications for gene therapy using AAV vectors[J]. Hum. Gene Ther., 2010, 21(6): 704-712.
|
41 |
VERDERA H C, KURANDA K, MINGOZZI F. AAV vector immunogenicity in humans: a long journey to successful gene transfer[J]. Mol. Ther., 2020, 28(3): 723-746.
|
43 |
WEI T, SUN Y, CHENG Q, et al.. Lung SORT LNPs enable precise homology-directed repair mediated CRISPR/Cas genome correction in cystic fibrosis models[J/OL]. Nat. Commun., 2023, 14(1): 7322[2024-07-22]. .
|
44 |
CORTI M, ELDER M, FALK D, et al.. B-cell depletion is protective against anti-AAV capsid immune response: a human subject case study[J/OL]. Mol. Ther. Meth. Clin. Dev., 2014, 1: 14033[2024-07-22]. .
|
45 |
ALLAN K M, FARROW N, DONNELLEY M, et al.. Treatment of cystic fibrosis: from gene- to cell-based therapies[J/OL]. Front. Pharmacol., 2021, 12: 639475[2024-07-22]. .
|
46 |
SHAH V S, ERNST S, TANG X X, et al.. Relationships among CFTR expression, HCO3 - secretion, and host defense may inform gene- and cell-based cystic fibrosis therapies[J]. Proc. Natl. Acad. Sci. USA, 2016, 113(19): 5382-5387.
|