1 |
SALZBURGER W. Understanding explosive diversification through cichlid fish genomics[J]. Nat. Rev. Genet., 2018, 19: 705-717.
|
2 |
BRAWAND D, WAGNER C E, LI Y I, et al.. The genomic substrate for adaptive radiation in African cichlid fish[J]. Nature, 2014, 513: 375-381.
|
3 |
KOCHER T D. Adaptive evolution and explosive speciation: the cichlid fish model[J]. Nat. Rev. Genet., 2004, 5: 288-298.
|
4 |
DUNZ A R, SCHLIEWEN U K. Molecular phylogeny and revised classification of the haplotilapiine cichlid fishes formerly referred to as "Tilapia"[J]. Mol. Phylogenet. Evol., 2013, 68(1): 64-80.
|
5 |
WAN Z Y, XIA J H, LIN G, et al.. Genome-wide methylation analysis identified sexually dimorphic methylated regions in hybrid tilapia[J/OL]. Sci. Rep., 2016, 6: 35903[2024-03-15]. .
|
6 |
LU J G, LI W, ZHOU Y, et al.. Molecular and morphological changes in Nile tilapia (Oreochromis niloticus) gonads during high-temperature-induced masculinization[J]. Aquac. Res. 2021, 53(3): 921-931.
|
7 |
ZU Y, ZHANG X, REN J, et al.. Biallelic editing of a lamprey genome using the CRISPR/Cas9 system[J/OL]. Sci. Rep., 2016, 6: 23496[2024-03-15]. .
|
8 |
NIE C H, WAN S M, CHEN Y L, et al.. Single-cell transcriptomes and runx2b-/- mutants reveal the genetic signatures of intermuscular bone formation in zebrafish[J/OL]. Natl. Sci. Rev., 2022, 9(11): nwac152[2024-03-15]. .
|
9 |
WANG J W, SONG W T, JIANG L, et al.. QTL Tnteraction of sex determination in half-smooth tongue-sole(Cynoglossus semilaevis)[J]. J. Agric. Biotechnol., 2015,23(01):89-95.
|
10 |
LIANG Z, CHEN S L, ZHANG J, et al.. Gonadal development process observation of half-smooth tongue sole in rearing population[J]. J. Southern Agric., 2012; 43(12):2074-2078.
|
11 |
ERIN L S, MARY A W, JOSEPH O. Efficient production and identification of CRISPR/Cas9-generated gene knockouts in the model system Danio rerio [J]. J. Visual. Exp., 2018 (138):56969[2024-03-15]. .
|
12 |
BRINKMAN E K, CHEN T, DE HAAS M, et al.. Kinetics and fidelity of the repair of Cas9-induced double-strand DNA breaks[J]. Mol. Cell, 2018, 70(5): 801-813.
|
13 |
KROLL F, POWELL G T, GHOSH M, et al.. A simple and effective F0 knockout method for rapid screening of behaviour and other complex phenotypes[J/OL]. Elife, 2021, 10: e59683[2024-03-15]. .
|
14 |
WANG R, ZHOU X J, DU X Q, et al.. Research progress of next-generation gene editing tools[J]. J. China Pharmac.Univ., 2022, 53(6): 633-642.
|
15 |
VARSHNEY G K, PEI W, LAFAVE M C, et al.. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9[J]. Genome Res., 2015, 25(7):1030-1042.
|
16 |
KATOH K, STANDLEY D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Mol. Biol. Evol., 2013, 30(4): 772-780.
|
17 |
ANDERSON J L, MULLIGAN T S, SHEN M C, et al.. mRNA processing in mutant zebrafish lines generated by chemical and CRISPR-mediated mutagenesis produces unexpected transcripts that escape nonsense-mediated decay[J/OL]. PLoS Genet., 2017, 13(11): e1007105[2024-03-15]. .
|
18 |
LALONDE S, STONE O A, LESSARD S, et al.. Frameshift indels introduced by genome editing can lead to in-frame exon skipping[J/OL]. PLoS One, 2017, 12(6): e0178700[2024-03-15]. .
|
19 |
TULADHAR R, YEU Y, TYLER PIAZZA J, et al.. CRISPR-Cas9-based mutagenesis frequently provokes on-target mRNA misregulation[J/OL]. Nat. Commun., 2019, 10: 4056[2024-03-15]. .
|
20 |
SMITS A H, ZIEBELL F, JOBERTY G, et al.. Biological plasticity rescues target activity in CRISPR knock outs[J]. Nat. Meth., 2019, 16: 1087-1093.
|
21 |
ELENA C, LUCIA K, ANASTASIA F, alet,. Early frameshift alleles of zebrafish tbx5a that fail to develop the heartstrings phenotype[J]. Matters 2017; 19(3):42-47.
|
22 |
SCHUERMANN A, HELKER C S M, HERZOG W. Metallothionein 2 regulates endothelial cell migration through transcriptional regulation of vegfc expression[J]. Angiogenesis, 2015, 18(4): 463-475.
|
23 |
GARRITY D M, CHILDS S, FISHMAN M C. The heartstrings mutation in zebrafish causes heart/fin Tbx5 deficiency syndrome[J]. Development, 2002, 129(19): 4635-4645.
|
24 |
SANDERS L H, WHITLOCK K E. Phenotype of the zebrafish masterblind (mbl) mutant is dependent on genetic background[J]. Dev. Dyn., 2003, 227(2):20-27.
|
25 |
HAN X, WANG B, JIN D, et al.. Precise dose of folic acid supplementation is essential for embryonic heart development in zebrafish[J/OL]. Biol. Basel., 2021, 11(1): 28[2024-03-15]. .
|
26 |
LI X, LI X, LI W, et al.. Sex-specific meiosis responses to Gsdf in medaka (Oryzias latipes)[J]. FEBS J., 2023, 290(10): 2760-2779.
|
27 |
WANG Y, WANG H M, ZHOU Y, et al.. Dusp1 regulates thermal tolerance limits in zebrafish by maintaining mitochondrial integrity[J]. Zool. Res., 2023, 44(1): 126-141.
|
28 |
YAN Q, LI W, GONG X, et al.. Transcriptomic and phenotypic analysis of CRISPR/Cas9-mediated gluk2 knockout in zebrafish[J/OL]. Genes Basel., 2022, 13(8): 1441[2024-03-15]. .
|