生物技术进展 ›› 2024, Vol. 14 ›› Issue (1): 72-84.DOI: 10.19586/j.2095-2341.2023.0111
刘容麟1(), 王宁2, 李岩异1(), 张卫婷1, 罗楚1, 牛维兵1
收稿日期:
2023-09-18
接受日期:
2023-11-15
出版日期:
2024-01-25
发布日期:
2024-02-05
通讯作者:
李岩异
作者简介:
刘容麟 E-mail: iuronglin6@163.com;
Ronglin LIU1(), Ning WANG2, Yanyi LI1(), Weiting ZHANG1, Chu LUO1, Weibing NIU1
Received:
2023-09-18
Accepted:
2023-11-15
Online:
2024-01-25
Published:
2024-02-05
Contact:
Yanyi LI
摘要:
随着生物技术的飞速发展,疫苗在预防和控制传染病方面的作用越发显著,广泛的疫苗接种对全球健康至关重要。然而,在中等及低收入国家,要提高疫苗接种覆盖率还存在重大挑战。由于液体疫苗存在易分解、热稳定性差、冷链配送成本高昂等不足,限制了疫苗在这些地区的分发和接种,使一些传染性疾病在偏远地区得不到有效控制。为了保证疫苗的稳定性和有效性,冷冻干燥(freeze-drying,FD)技术成为疫苗制备和保藏的关键技术之一。从冷冻干燥技术的原理、影响因素、FD技术在不同类型疫苗中的研究以及未来发展趋势等方面进行了全面、系统的综述,以期为疫苗研究和疫苗产业化的进一步发展提供有益的信息和思路。
中图分类号:
刘容麟, 王宁, 李岩异, 张卫婷, 罗楚, 牛维兵. 冷冻干燥技术在疫苗研发中的应用进展[J]. 生物技术进展, 2024, 14(1): 72-84.
Ronglin LIU, Ning WANG, Yanyi LI, Weiting ZHANG, Chu LUO, Weibing NIU. The Application Progress of Freeze-drying Technology in Vaccine Research and Devolopment[J]. Current Biotechnology, 2024, 14(1): 72-84.
疫苗 | 疫苗类型 | 冻干方式 | 稳定性 | 使用配方 | 参考文献 |
---|---|---|---|---|---|
重组牛痘疫苗(rTTV-OVA) | 病毒载体疫苗 | 冷冻干燥 | 在4 ℃和25 ℃均能提高热稳定性,保持了良好的免疫反应性和免疫原性 | 聚乙二醇∶右旋糖酐∶牛血清白蛋白= 50∶5∶4 | [ |
人5型腺病毒疫苗(Ad5-ENV) | 病毒载体疫苗 | 冷冻干燥 | 在4 ℃和25 ℃均能提高热稳定性,保持了良好的感染性和免疫原性 | 聚乙二醇∶L-谷氨酰胺=50∶9 | [ |
口服轮状疫苗-默克公司RotaTeq® | 减毒活疫苗 | 冷冻干燥 | 5 ℃下稳定超过36个月,在37 ℃下稳定20个月,在45 ℃下稳定7个月仍然保持良好疫苗效力 | HSRV04D5配方 | [ |
新型冠状病毒疫苗 | 核酸疫苗 | 冷冻干燥 | 冻干后脂质体封装完整,在4、22和37 ℃条件至少可以保持12周且转染性无明显变化 | 脂质体∶mRNA=20∶1;12.5%蔗糖、Tris或磷酸盐 | [ |
四价流感疫苗Fluad® | 基因重组疫苗 | 薄膜冷冻干燥 | 重组血凝素(rHA)抗原的完整性和血凝活性,冻干制剂对重复冻融不敏感,具有良好的稳定性 | 蔗糖 | [ |
牛合并病毒灭活疫苗(pneumo-5) | 灭活疫苗 | 冷冻干燥 | 5种病毒:牛病毒性腹泻病毒(BVDV)1和2型、牛单纯疱疹病毒1.1型(BoHV-1.1)、牛流感病毒3型(BPSV)和牛呼吸道合胞病毒(BRSV)均能够保护小牛,并且具有安全性和有效性 | — | [ |
炭疽疫苗(anthrax vaccine) | 减毒活疫苗 | 冷冻干燥 | 20 ℃储存条件下可以在180 d内保持高效力 | — | [ |
风疹疫苗(rubella vaccine) | 减毒活疫苗 | 冷冻干燥 | 与商用的明胶稳定剂配方对比,表现出充分的稳定性 | 海藻糖 | [ |
腮腺炎活疫苗(mumps vaccine RS-12 株) | 减毒活疫苗 | 冷冻干燥 | 在37 ℃条件下存储1周,CCID50下降幅度不到10倍 | 海藻糖二水合物 | [ |
带状疱疹病毒疫苗 | 减毒活疫苗 | 冷冻干燥 | 临床接种无论年龄、性别或合并症,都能有效降低被接种者患上带状疱疹的风险 | — | [ |
黄热病毒(vYF) | 减毒活疫苗 | 喷雾干燥 | 具有良好的断裂力和高抗溃散性;2~8 ℃下冷藏3年,这种干燥微粒的vYF感染滴度与冷冻干燥产品相似,都具有良好的稳定性;在25 ℃和37 ℃的加速稳定性研究中,微粒中vYF的降解动力学与常规冻干产品无显著差异 | 糖/聚合物 | [ |
结核分枝杆菌疫苗 | 亚单位疫苗 | 冷冻干燥 | 45 ℃条件下加热1周后进行免疫,舌下抗体反应并未减弱 | 糖类和佐剂 | [ |
水痘带状疱疹病毒疫苗(VZV) | 亚单位疫苗 | 冷冻干燥 | 体液免疫和细胞免疫反应方面均表现出极高的效果,稳定性良好 | CIA09A的新型脂质体佐剂 | [ |
埃博拉病毒疫苗(EBOV) | 重组病毒载体疫苗 | 冷冻干燥 | 40 ℃下稳定12周,且仍保持免疫原性 | 9.5%海藻糖为稳定剂,乙酸铵调节冻干过程中的离子强度 | [ |
新型冠状病毒疫苗 | 核酸疫苗 | 冷冻干燥 | 疫苗在25 ℃条件下保持6个月的物理化学性质和生物活性稳定,可以产生强大的免疫效应,且没有严重不良事件 | 脂质、mRNA | [ |
新型冠状病毒疫苗 | 核酸疫苗 | 冷冻干燥 | -20 ℃储存条件下至少能保持12个月,无转染效果损失 | 乳酸-共-缩-乙二醇、mRNA | [ |
人乳头瘤病毒(HPV MS2-L2) | 病毒样颗粒疫苗 | 喷雾干燥 | 37 ℃条件下可以存放2个月仍保持良好的免疫效果,所产生的抗体持久性也很好,在10个月期间没有明显的衰减 | - | [ |
二价诺如病毒疫苗(norovirus) | 病毒样颗粒疫苗 | 薄膜冷冻干燥 | 冻干粉在40 ℃、相对湿度为75%条件下储存8周后,抗原的效力仍保持在指定的可接受范围内 | 4.55%或5.55%蔗糖,或3%~4%海藻糖加上0.55%蔗糖 | [ |
肺炎球菌疫苗(pneumococcal vaccine) | 结合类疫苗 | 冷冻干燥 | 冻干过程中疫苗的凝聚和效力无降低,热稳定性良好 | 0.5%丙二醇和6%甘露醇、0.5%羧甲基纤维素钠和4%蔗糖 | [ |
表1 冻干疫苗示例及稳定性
Table 1 Examples of freeze-dried vaccines and their stability
疫苗 | 疫苗类型 | 冻干方式 | 稳定性 | 使用配方 | 参考文献 |
---|---|---|---|---|---|
重组牛痘疫苗(rTTV-OVA) | 病毒载体疫苗 | 冷冻干燥 | 在4 ℃和25 ℃均能提高热稳定性,保持了良好的免疫反应性和免疫原性 | 聚乙二醇∶右旋糖酐∶牛血清白蛋白= 50∶5∶4 | [ |
人5型腺病毒疫苗(Ad5-ENV) | 病毒载体疫苗 | 冷冻干燥 | 在4 ℃和25 ℃均能提高热稳定性,保持了良好的感染性和免疫原性 | 聚乙二醇∶L-谷氨酰胺=50∶9 | [ |
口服轮状疫苗-默克公司RotaTeq® | 减毒活疫苗 | 冷冻干燥 | 5 ℃下稳定超过36个月,在37 ℃下稳定20个月,在45 ℃下稳定7个月仍然保持良好疫苗效力 | HSRV04D5配方 | [ |
新型冠状病毒疫苗 | 核酸疫苗 | 冷冻干燥 | 冻干后脂质体封装完整,在4、22和37 ℃条件至少可以保持12周且转染性无明显变化 | 脂质体∶mRNA=20∶1;12.5%蔗糖、Tris或磷酸盐 | [ |
四价流感疫苗Fluad® | 基因重组疫苗 | 薄膜冷冻干燥 | 重组血凝素(rHA)抗原的完整性和血凝活性,冻干制剂对重复冻融不敏感,具有良好的稳定性 | 蔗糖 | [ |
牛合并病毒灭活疫苗(pneumo-5) | 灭活疫苗 | 冷冻干燥 | 5种病毒:牛病毒性腹泻病毒(BVDV)1和2型、牛单纯疱疹病毒1.1型(BoHV-1.1)、牛流感病毒3型(BPSV)和牛呼吸道合胞病毒(BRSV)均能够保护小牛,并且具有安全性和有效性 | — | [ |
炭疽疫苗(anthrax vaccine) | 减毒活疫苗 | 冷冻干燥 | 20 ℃储存条件下可以在180 d内保持高效力 | — | [ |
风疹疫苗(rubella vaccine) | 减毒活疫苗 | 冷冻干燥 | 与商用的明胶稳定剂配方对比,表现出充分的稳定性 | 海藻糖 | [ |
腮腺炎活疫苗(mumps vaccine RS-12 株) | 减毒活疫苗 | 冷冻干燥 | 在37 ℃条件下存储1周,CCID50下降幅度不到10倍 | 海藻糖二水合物 | [ |
带状疱疹病毒疫苗 | 减毒活疫苗 | 冷冻干燥 | 临床接种无论年龄、性别或合并症,都能有效降低被接种者患上带状疱疹的风险 | — | [ |
黄热病毒(vYF) | 减毒活疫苗 | 喷雾干燥 | 具有良好的断裂力和高抗溃散性;2~8 ℃下冷藏3年,这种干燥微粒的vYF感染滴度与冷冻干燥产品相似,都具有良好的稳定性;在25 ℃和37 ℃的加速稳定性研究中,微粒中vYF的降解动力学与常规冻干产品无显著差异 | 糖/聚合物 | [ |
结核分枝杆菌疫苗 | 亚单位疫苗 | 冷冻干燥 | 45 ℃条件下加热1周后进行免疫,舌下抗体反应并未减弱 | 糖类和佐剂 | [ |
水痘带状疱疹病毒疫苗(VZV) | 亚单位疫苗 | 冷冻干燥 | 体液免疫和细胞免疫反应方面均表现出极高的效果,稳定性良好 | CIA09A的新型脂质体佐剂 | [ |
埃博拉病毒疫苗(EBOV) | 重组病毒载体疫苗 | 冷冻干燥 | 40 ℃下稳定12周,且仍保持免疫原性 | 9.5%海藻糖为稳定剂,乙酸铵调节冻干过程中的离子强度 | [ |
新型冠状病毒疫苗 | 核酸疫苗 | 冷冻干燥 | 疫苗在25 ℃条件下保持6个月的物理化学性质和生物活性稳定,可以产生强大的免疫效应,且没有严重不良事件 | 脂质、mRNA | [ |
新型冠状病毒疫苗 | 核酸疫苗 | 冷冻干燥 | -20 ℃储存条件下至少能保持12个月,无转染效果损失 | 乳酸-共-缩-乙二醇、mRNA | [ |
人乳头瘤病毒(HPV MS2-L2) | 病毒样颗粒疫苗 | 喷雾干燥 | 37 ℃条件下可以存放2个月仍保持良好的免疫效果,所产生的抗体持久性也很好,在10个月期间没有明显的衰减 | - | [ |
二价诺如病毒疫苗(norovirus) | 病毒样颗粒疫苗 | 薄膜冷冻干燥 | 冻干粉在40 ℃、相对湿度为75%条件下储存8周后,抗原的效力仍保持在指定的可接受范围内 | 4.55%或5.55%蔗糖,或3%~4%海藻糖加上0.55%蔗糖 | [ |
肺炎球菌疫苗(pneumococcal vaccine) | 结合类疫苗 | 冷冻干燥 | 冻干过程中疫苗的凝聚和效力无降低,热稳定性良好 | 0.5%丙二醇和6%甘露醇、0.5%羧甲基纤维素钠和4%蔗糖 | [ |
1 | CHEN Y, LIAO Q, CHEN T, et al.. Freeze-drying formulations increased the adenovirus and poxvirus vaccine storage times and antigen stabilities[J]. Virol. Sin., 2021, 36(3): 365-372. |
2 | LYU J L, BAO L R, SHEN X, et al.. The preparation of N-IgY targeting SARS-CoV-2 and its immunomodulation to IFN-gamma production in vitro[J/OL]. Int. Immunopharmacol., 2021, 96: 107797[2021-06-25]. . |
3 | HARRIS R J. Preservation of biological materials by freeze-drying[J]. Nature, 1951, 168(4281): 851-853. |
4 | WANG Z, LI L, REN G, et al.. A comprehensive review on stability of therapeutic proteins treated by freeze-drying: induced stresses and stabilization mechanisms involved in processing[J]. Dry. Technol., 2022, 40(16): 3373-3388. |
5 | LIU Y, ZHANG Z, HU L. High efficient freeze-drying technology in food industry[J]. Crit. Rev. Food Sci. Nutr., 2022, 62(12): 3370-3388. |
6 | FRANKS F. Freeze-drying of bioproducts: putting principles into practice[J]. Eur. J. Pharm. Biopharm., 1998, 45(3): 221-229. |
7 | WANG G Q, PU J, YU X Q, et al.. Influence of freezing temperature before freeze-drying on the viability of various Lactobacillus plantarum strains[J]. J. Dairy Sci., 2020, 103(4): 3066-3075. |
8 | SITAR A, ŠKRLEC K, VOGLAR J, et al.. Effects of controlled nucleation on freeze-drying lactose and mannitol aqueous solutions[J]. Dry. Technol., 2018, 36(10): 1263-1272. |
9 | NUYTTEN G, REVATTA S R, VAN BOCKSTAL P, et al.. Development and application of a mechanistic cooling and freezing model of the spin freezing step within the sramework of continuous freeze-drying[J/OL]. Rmaceutics, 2021, 13: 2076[2021-12-29]. . |
10 | KAWASAKI H, SHIMANOUCHI T, KIMURA Y. Recent development of optimization of lyophilization process[J/OL]. J. Chem., 2019, 2019: 9502856[2019-05-05]. . |
11 | WANG Z, DUAN X, LI L, et al.. Effects of freeze-drying and microwave vacuum freeze-drying on the activity of IgY: from the perspective of protein structure[J]. Dry. Technol., 2023, 41(2): 222-232. |
12 | ASSEGEHEGN G, FUENTE B D L, FRANCO J, et al.. Understanding and optimization of the secondary drying step of a freeze-drying process: a case study[J]. Dry. Technol., 2021, 39(8): 1003-1017. |
13 | YOON K, NARSIMHAN V. Understanding heat transfer during the secondary drying stage of freeze drying: current practice and knowledge gaps[J]. J. Pharm. Sci., 2022, 111(2): 368-381. |
14 | MEULEWAETER S, NUYTTEN G, CHENG M H Y, et al.. Continuous freeze-drying of messenger RNA lipid nanoparticles enables storage at higher temperatures[J/OL]. J. Control. Release, 2023, 357: 149[2023-03-21]. . |
15 | HUANG Y, ZHENG S, GUO Z, et al.. Ionizable liposomal siRNA therapeutics enables potent and persistent treatment of Hepatitis B[J/OL]. Signal Transduct. Target. Ther., 2022, 7: 38[2022-02-12]. . |
16 | MATEJTSCHUK P, BIRD C, EZEAJUGHI E, et al.. Impact of formulation choices on the freeze-drying of an interleukin-6 reference material[J/OL]. Front. Mol. Biosci., 2022, 9: 868460[2023-12-20]. . |
17 | MADAN M, SIKRIWAL D, SHARMA G, et al.. Rational design of heat stable lyophilized rotavirus vaccine formulations[J]. Hum. Vaccines Immunother., 2018, 14(9): 2132-2141. |
18 | MEYER L D, VAN BOCKSTAL P J, CORVER J, et al.. Evaluation of spin freezing versus conventional freezing as part of a continuous pharmaceutical freeze-drying concept for unit doses[J]. Int. J. Pharm., 2015, 496(1): 75-85. |
19 | LEYS L, NUYTTEN G, VAN BOCKSTAL P J, et al.. Evaluation of a PAT-based in-line control system for a continuous spin freeze-drying process[J/OL]. Int. J. Pharm., 2023, 641: 123062[2023-05-21]. . |
20 | Method and system for freeze-drying injectable compositions, in particular pharmaceutival compositions : US201815922757[P] 2019-03-01. |
21 | LUY B, STAMATO H. Spray freeze drying[M]//OHTAKE S, IZUTSU K, LECHUGA-BALLESTEROS D. Drying technologies for biotechnology and pharmaceutical applications. America: John Wiley & Sons Ltd, 2020, 217-237. |
22 | DI A, ZHANG S, LIU X, et al.. Microfluidic spray dried and spray freeze dried uniform microparticles potentially for intranasal drug delivery and controlled release[J]. Powder Technol., 2021, 379: 144-153. |
23 | SHOKOUH M K, FAGHIHI H, DARABI M, et al.. Formulation and evaluation of inhalable microparticles of Rizatriptan benzoate processed by spray freeze-drying[J/OL]. J. Drug Deliv. Sci. Tec., 2021, 62: 7[2019-05-05]. . |
24 | QIU Y, MAN R C H, LIAO Q, et al.. Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide[J]. J. Control. Release Off. J. Control. Release Soc., 2019, 314: 102-115. |
25 | MUTUKURI T T, DARWISH A, STRONGRICH A D, et al.. Radio frequency-assisted ultrasonic spray freeze drying for pharmaceutical protein solids[J]. J. Pharm. Sci., 2023, 112(1): 40-50. |
26 | PAN H W, SEOW H C, LO J C K, et al.. Spray-dried and spray-freeze-dried powder formulations of an anti-interleukin-4Rα antibody for pulmonary delivery[J]. Pharm. Res., 2022, 39(9): 2291-2304. |
27 | YU S H, PU X H, AHMED M U, et al.. Spray-freeze-dried inhalable composite microparticles containing nanoparticles of combinational drugs for potential treatment of lung infections caused by Pseudomonas aeruginosa [J/OL]. Int. J. Pharmaceut., 2021, 610: 9[2021-10-01]. . |
28 | DORETH M, HUSSEIN M A, PRIEMEL P A, et al.. Amorphization within the tablet: using microwave irradiation to form a glass solution in situ [J]. Int. J. Pharm., 2017, 519(1-2): 343-351. |
29 | GITTER J H, GEIDOBLER R, PRESSER I, et al.. Microwave-assisted freeze-drying of monoclonal antibodies: product quality aspects and storage stability[J/OL]. Pharmaceutics, 2019, 11(12):674[2019-12-18]. . |
30 | HARDTER N, GEIDOBLER R, PRESSER I, et al.. Accelerated production of biopharmaceuticals via microwave-assisted freeze-drying (MFD)[J/OL]. Pharmaceutics, 2023, 15: 15[2023-04-27]. . |
31 | YU Y S, ABOULFOTOUH K, XU H, et al.. Feasibility of intranasal delivery of thin-film freeze-dried, mucoadhesive vaccine powders[J/OL]. Int. J. Pharm., 2023, 640: 122990[2023-12-20]. . |
32 | HUFNAGEL S, XU H, SAHAKIJPIJARN S, et al.. Dry powders for inhalation containing monoclonal antibodies made by thin-film freeze-drying[J/OL]. Int. J. Pharm., 2022, 618: 121637[2022-03-09]. . |
33 | ABOUL FOTOUH K, UNO N, XU H, et al.. Formulation of dry powders of vaccines containing MF59 or AddaVax by thin-film freeze-drying: towards a dry powder universal flu vaccine[J/OL]. Int. J. Pharm., 2022, 624: 122021[2022-07-17]. . |
34 | YAN J K, WU L X, QIAO Z R, et al.. Effect of different drying methods on the product quality and bioactive polysaccharides of bitter gourd (Momordica charantia L.) slices[J]. Food Chem., 2019, 271: 588-596. |
35 | MEHANNA M M, ABLA K K. Recent advances in freeze-drying: variables, cycle optimization, and innovative techniques[J]. Pharm. Dev. Technol., 2022, 27(8): 904-923. |
36 | GUO Y, BALDELLI A, SINGH A, et al.. Production of high loading insulin nanoparticles suitable for oral delivery by spray drying and freeze drying techniques[J/OL]. Sci. Rep., 2022, 12: 9949[2022-06-15]. . |
37 | FADEEL M R A, EL-DAKHLY A T, ALLAM A M, et al.. Preparation and efficacy of freeze-dried inactivated vaccine against bovine viral diarrhea virus genotypes 1 and 2, bovine herpes virus type 1.1, bovine parainfluenza-3 virus, and bovine respiratory syncytial virus[J]. Clin. Exp. Vaccine Res., 2020, 9(2): 119-125. |
38 | 姚舜禹,张丽琳.新城疫疫苗研究进展[J].生物技术进展,2020,10(5):470-478. |
YAO S Y, ZHANG L L. Progress on Newcastle disease vaccine[J]. Curr. Biotechnol., 2020, 10(5): 470-478. | |
39 | TYRRELL D A, RIDGWELL B. Freeze-drying of certain viruses[J]. Nature, 1965, 206: 115-116. |
40 | ABAYNEH T, GETACHEW B, GELAYE E, et al.. Viability evaluation of freeze dried and suspension anthrax spore vaccine formulations stored at different temperatures[J]. Vaccine, 2021, 39(42): 6245-6249. |
41 | SHOKRI S, SHAHKARAMI M K, SHAFYI A, et al.. Evaluation of the thermal stability of live-attenuated Rubella vaccine (Takahashi strain) formulated and lyophilized in different stabilizers[J]. J. Virol. Meth., 2019, 264: 18-22. |
42 | JAMIL R K, TAQAVIAN M, SADIGH Z A, et al.. Evaluation of the thermal stability of a novel strain of live-attenuated mumps vaccine (RS-12 strain) lyophilized in different stabilizers[J]. J. Virol. Meth., 2014, 199: 35-38. |
43 | MATSUMOTO K, OHFUJI S, INOHARA K, et al.. Effectiveness of live attenuated varicella-zoster vaccine in adults older than 50 years in Japan: a retrospective cohort study[J/OL]. Vaccines, 2023, 11: 9[2023-01-25]. . |
44 | CLÉNET D, HOURQUET V, WOINET B, et al.. A spray freeze dried micropellet based formulation proof-of-concept for a yellow fever vaccine candidate[J]. Eur. J. Pharm. Biopharm. 2019, 142: 334-343. |
45 | KELLY S H, OPOLOT E E, WU Y Y, et al.. Tabletized supramolecular assemblies for sublingual peptide immunization[J/OL]. Adv. Healthc. Mater., 2021, 10: 6[2021-02-01]. . |
46 | WUI S R, KIM K S, RYU J I, et al.. Efficient induction of cell-mediated immunity to varicella-zoster virus glycoprotein E co-lyophilized with a cationic liposome-based adjuvant in mice[J]. Vaccine, 2019, 37(15): 2131-2141. |
47 | ARNEMO M, VIKSMOEN WATLE S S, SCHOULTZ K M, et al.. Stability of a vesicular stomatitis virus-vectored Ebola vaccine[J]. J. Infect. Dis., 2016, 213(6): 930-933. |
48 | PRESTON K B, MONTICELLO C R, WONG T A S, et al.. Preservation of quaternary structure in thermostable, lyophilized filovirus glycoprotein vaccines: a search for stability-indicating assays[J]. J. Pharm. Sci., 2020, 109(12): 3716-3727. |
49 | PACKER M, GYAWALI D, YERABOLU R, et al.. A novel mechanism for the loss of mRNA activity in lipid nanoparticle delivery systems[J/OL]. Nat. Commun., 2021, 12: 6777 [2021-11-24]. . |
50 | AI L, LI Y, ZHOU L, et al.. Lyophilized mRNA-lipid nanoparticle vaccines with long-term stability and high antigenicity against SARS-CoV-2[J/OL]. Cell Discov., 2023, 9: 9[2023-01-23]. . |
51 | LI Z Y, ZHANG X Q, HO W, et al.. Lipid-polymer hybrid "particle-in-particle" nanostructure gene delivery platform explored for lyophilizable DNA and mRNA COVID-19 vaccines[J/OL]. Adv. Funct. Mater., 2022, 32: 16 [2022-07-22]. . |
52 | 李岩异,吕娜,贾思凝,等.体外组装的病毒样颗粒在疫苗和药物递送中的应用[J].生物技术进展,2023,13(2):201-209. |
LI Y Y, LYU N, JIA S N, et al.. Application of virus like particles assembled in vitro in vaccine and drug delivery[J]. Curr. Biotechnol., 2023, 13(2): 201-209. | |
53 | YADAV R, ZHAI L, KUNDA N K, et al.. Mixed bacteriophage MS2-L2 VLPs elicit long-lasting protective antibodies against HPV pseudovirus 51[J/OL]. Viruses, 2021, 13(6):1113[2021-07-03]. . |
54 | XU H, BHOWMIK T, GONG K, et al.. Thin-film freeze-drying of a bivalent Norovirus vaccine while maintaining the potency of both antigens[J/OL]. Int. J. Pharm., 2021, 609: 121126[2023-12-20]. . |
55 | MENSCH C, CHINTALA R, NAWROCKI D, et al.. Enabling lyophilized pneumococcal conjugate vaccines through formulation design and excipient selection suitable for A multivalent adjuvanted vaccine[J]. J. Pharm. Sci., 2021, 110(1): 97-107. |
[1] | 焦红燕, 李国超, 常亮, 李岩异, 翟丽丽. 诺如病毒疫苗研究概况[J]. 生物技术进展, 2024, 14(1): 17-25. |
[2] | 吕娜, 李岩异, 马祝青. 人呼吸道合胞病毒感染的预防和治疗研究进展[J]. 生物技术进展, 2024, 14(1): 26-34. |
[3] | 蔚丹, 马云龙, 万方, 武建强. mRNA疫苗的研究及应用进展[J]. 生物技术进展, 2023, 13(4): 492-498. |
[4] | 高朗, 于思雪, 袁春森, 单志伟, 赵鹏翔. 黏蛋白在肿瘤免疫治疗中的研究进展[J]. 生物技术进展, 2023, 13(3): 390-398. |
[5] | 李文桂, 陈雅棠. 重组金丝雀痘病毒载体疫苗研制进展[J]. 生物技术进展, 2022, 12(1): 36-43. |
[6] | 李丹, 宋浩志, 高维崧, 刘兴健, 张志芳, 李轶女. 小反刍兽疫病毒H蛋白的原核表达及免疫原性测定[J]. 生物技术进展, 2021, 11(6): 770-776. |
[7] | 姚舜禹,张丽琳. 新城疫疫苗研究进展[J]. 生物技术进展, 2020, 10(5): 470-478. |
[8] | 石江传,石佳,于明晓,赵伟学,徐昊,徐磊. 响应面法优化火麻仁油微胶囊喷雾干燥工艺的研究[J]. 生物技术进展, 2020, 10(2): 198-204. |
[9] | 赵云霞,江魁,郭爱英,李景艳. 1型肺炎兔抗血清的制备及其在多糖含量检测中的质控研究[J]. 生物技术进展, 2019, 9(4): 416-421. |
[10] | 刘梦昱,谢飞,张鑫,赵鹏翔,. 胶质母细胞瘤免疫治疗研究进展[J]. 生物技术进展, 2019, 9(3): 223-230. |
[11] | 魏珍珍,刘兴健,王朋,张志芳,易咏竹. 自组装铁蛋白在纳米疫苗领域的应用进展[J]. 生物技术进展, 2019, 9(3): 240-245. |
[12] | 李彦虎,牛耀星,刘小霞,郭娟,邓展瑞,贠建民. 浆水直投式增香酵母冻干菌剂制备工艺的优化[J]. 生物技术进展, 2018, 8(5): 441-449. |
[13] | 朱俊颖,孙晔,蒋丽华,邱勇隽,赵黎明. 疫苗规模化分离纯化研究进展[J]. 生物技术进展, 2015, 5(6): 405-413. |
[14] | 李有朝,蔡玉品,郝佳. 埃博拉病毒疫苗研究进展及相关专利浅析[J]. 生物技术进展, 2015, 5(2): 142-147. |
[15] | 刘培磊,李宁,连庆,王旭静,王志兴. 利用植物生物反应器生产药用蛋白的研究[J]. 生物技术进展, 2013, 3(5): 309-316. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部