生物技术进展 ›› 2023, Vol. 13 ›› Issue (3): 390-398.DOI: 10.19586/j.2095-2341.2023.0017
收稿日期:
2023-02-17
接受日期:
2023-03-21
出版日期:
2023-05-25
发布日期:
2023-06-12
通讯作者:
赵鹏翔
作者简介:
高朗 E-mail: 15611140435@163.com;
基金资助:
Lang GAO(), Sixue YU, Chunsen YUAN, Zhiwei SHAN, Pengxiang ZHAO()
Received:
2023-02-17
Accepted:
2023-03-21
Online:
2023-05-25
Published:
2023-06-12
Contact:
Pengxiang ZHAO
摘要:
黏蛋白是一类主要由黏多糖组成的高分子量糖蛋白,其主要分布在人体的各种管腔内表面,对上皮细胞起到保护和润滑作用。多项研究表明,黏蛋白在肿瘤的发生发展中扮演着重要角色,因此,部分黏蛋白被确定为肿瘤标志物,成为很有前景的肿瘤治疗靶点。综述了目前以黏蛋白为靶点的肿瘤治疗方案,包括小分子抑制剂、抗体疗法、疫苗等方面,以期为临床肿瘤诊治方法的发展与优化提供理论参考。
中图分类号:
高朗, 于思雪, 袁春森, 单志伟, 赵鹏翔. 黏蛋白在肿瘤免疫治疗中的研究进展[J]. 生物技术进展, 2023, 13(3): 390-398.
Lang GAO, Sixue YU, Chunsen YUAN, Zhiwei SHAN, Pengxiang ZHAO. Research Progress of Mucin in Tumor Immunotherapy[J]. Current Biotechnology, 2023, 13(3): 390-398.
抑制剂种类 | 药物名称 | 肿瘤类型 | 研究现状 | 参考文献 |
---|---|---|---|---|
多肽 | GO-203 | 人十二指肠腺癌 | 临床前研究 | |
食管鳞状细胞癌 | 临床前研究 | |||
尿路上皮癌 | 临床前研究 | |||
急性髓系白血病 | 临床前研究 | |||
miRNA | miR-145 | 非小细胞肺癌 | 临床前研究 | |
卵巢癌 | 临床前研究 | |||
miR-29a,miR-330-5p | 胰腺癌 | 临床前研究 | ||
miR-1226-3p | 侵袭性乳腺癌症 | 临床前研究 | ||
miR-150 | 胰腺癌 | 临床前研究 | ||
miR-200c | 胰腺癌 | 临床前研究 |
表1 靶向黏蛋白的小分子抑制剂研究现状
Table 1 Research status of small molecule inhibitors targeting mucin
抑制剂种类 | 药物名称 | 肿瘤类型 | 研究现状 | 参考文献 |
---|---|---|---|---|
多肽 | GO-203 | 人十二指肠腺癌 | 临床前研究 | |
食管鳞状细胞癌 | 临床前研究 | |||
尿路上皮癌 | 临床前研究 | |||
急性髓系白血病 | 临床前研究 | |||
miRNA | miR-145 | 非小细胞肺癌 | 临床前研究 | |
卵巢癌 | 临床前研究 | |||
miR-29a,miR-330-5p | 胰腺癌 | 临床前研究 | ||
miR-1226-3p | 侵袭性乳腺癌症 | 临床前研究 | ||
miR-150 | 胰腺癌 | 临床前研究 | ||
miR-200c | 胰腺癌 | 临床前研究 |
治疗措施 | 药物名称 | 肿瘤类型 | 研究现状 | 参考文献/临床试验编号 |
---|---|---|---|---|
单克隆 抗体 | TAB004 | 胰腺导管腺癌 | 临床前研究 | |
Gatipotuzumab | 复发性卵巢上皮癌 | 临床Ⅱ期 | ||
PankoMab-GEX | TA-MUC1阳性癌症 | 临床Ⅰ期 | ||
Oregovomab | 复发性卵巢癌 | 临床Ⅱ期 | NCT05335993 | |
ADC疗法 | 16A+MMAE | 非小细胞肺癌 | 临床前研究 | |
SAR566658 | 胰腺癌、宫颈癌、膀胱癌、卵巢癌与乳腺癌 | 临床前研究 | ||
恶性肿瘤 | 临床Ⅰ期 | NCT01156870 | ||
三阴性乳腺癌 | 临床Ⅱ期 | NCT02984683 | ||
3D1-MMAE | 肺癌、三阴性乳腺癌 | 临床前研究 | ||
BM7-PE MUC1 | 结直肠癌 | 临床Ⅱ期 | NCT04550897 | |
M1231 | 实体瘤 | 临床Ⅰ期 | NCT04695847 | |
DMUC5754A | 卵巢癌、不可切除胰腺癌 | 临床Ⅰ期 | ||
CAR-T 疗法 | MUC28z CAR T | 三阴性乳腺癌症 | 临床前研究 | |
CAR-MUC1-IL22 T细胞 | 头颈部鳞状细胞癌 | 临床前研究 | ||
huMNC2-CAR44 T细胞 | 转移性乳腺癌 | 临床Ⅰ期 | NCT04020575 | |
JCAR020 | 实体瘤 | 临床Ⅰ期 | NCT02498912 |
表2 黏蛋白相关抗体疗法研究现状
Table 2 Gurrent research status of mucin related autibody therapy
治疗措施 | 药物名称 | 肿瘤类型 | 研究现状 | 参考文献/临床试验编号 |
---|---|---|---|---|
单克隆 抗体 | TAB004 | 胰腺导管腺癌 | 临床前研究 | |
Gatipotuzumab | 复发性卵巢上皮癌 | 临床Ⅱ期 | ||
PankoMab-GEX | TA-MUC1阳性癌症 | 临床Ⅰ期 | ||
Oregovomab | 复发性卵巢癌 | 临床Ⅱ期 | NCT05335993 | |
ADC疗法 | 16A+MMAE | 非小细胞肺癌 | 临床前研究 | |
SAR566658 | 胰腺癌、宫颈癌、膀胱癌、卵巢癌与乳腺癌 | 临床前研究 | ||
恶性肿瘤 | 临床Ⅰ期 | NCT01156870 | ||
三阴性乳腺癌 | 临床Ⅱ期 | NCT02984683 | ||
3D1-MMAE | 肺癌、三阴性乳腺癌 | 临床前研究 | ||
BM7-PE MUC1 | 结直肠癌 | 临床Ⅱ期 | NCT04550897 | |
M1231 | 实体瘤 | 临床Ⅰ期 | NCT04695847 | |
DMUC5754A | 卵巢癌、不可切除胰腺癌 | 临床Ⅰ期 | ||
CAR-T 疗法 | MUC28z CAR T | 三阴性乳腺癌症 | 临床前研究 | |
CAR-MUC1-IL22 T细胞 | 头颈部鳞状细胞癌 | 临床前研究 | ||
huMNC2-CAR44 T细胞 | 转移性乳腺癌 | 临床Ⅰ期 | NCT04020575 | |
JCAR020 | 实体瘤 | 临床Ⅰ期 | NCT02498912 |
疫苗种类 | 产品名称 | 肿瘤类型 | 研究现状 | 参考文献/临床试验编号 |
---|---|---|---|---|
DNA疫苗 | pVAX1-MUC1-VNTR6 DNA疫苗 | 胰腺癌 | 临床前研究 | |
survivin/ MUC1 (MS)-IL-2-CpG | 结直肠癌 | 临床前研究 | ||
病毒载体疫苗 | TG4010 | 前列腺癌、肾癌 | 临床Ⅱ期 | |
非小细胞肺癌 | 临床Ⅱ/Ⅲ期 | |||
ETBX-061 | 前列腺癌 | 临床Ⅰ期 | ||
结直肠癌、胆管癌 | 临床Ⅰ期 | |||
树突状细胞疫苗 | CVac | 卵巢癌 | 临床Ⅱ期 | |
胰腺癌 | 临床Ⅱ期 | NCT02310971 | ||
亚单位疫苗 | L-BLP25 | 乳腺癌 | 临床Ⅱ期 | |
非小细胞肺癌 | 临床Ⅱ/Ⅲ期 | |||
多发性骨髓瘤 | 临床Ⅱ期 | |||
转移性结直肠癌 | 临床Ⅱ期 | |||
前列腺癌 | 临床Ⅱ期 | NCT01496131 | ||
MUC1-Poly-ICLC | 结直肠癌 | 临床Ⅰ/Ⅱ期 | ||
ImMucin | 多发性骨髓瘤 | 临床Ⅰ/Ⅱ期 | ||
糖肽疫苗 | ONT-10 | 乳腺癌、卵巢癌 | 临床Ⅰ期 | NCT02270372 |
实体瘤 | 临床Ⅰ期 | NCT01556789 | ||
Theratope | 转移性乳腺癌 | 临床Ⅲ期 |
表3 黏蛋白相关疫苗研究现状
Table 3 Research status of mucin related vaccines.
疫苗种类 | 产品名称 | 肿瘤类型 | 研究现状 | 参考文献/临床试验编号 |
---|---|---|---|---|
DNA疫苗 | pVAX1-MUC1-VNTR6 DNA疫苗 | 胰腺癌 | 临床前研究 | |
survivin/ MUC1 (MS)-IL-2-CpG | 结直肠癌 | 临床前研究 | ||
病毒载体疫苗 | TG4010 | 前列腺癌、肾癌 | 临床Ⅱ期 | |
非小细胞肺癌 | 临床Ⅱ/Ⅲ期 | |||
ETBX-061 | 前列腺癌 | 临床Ⅰ期 | ||
结直肠癌、胆管癌 | 临床Ⅰ期 | |||
树突状细胞疫苗 | CVac | 卵巢癌 | 临床Ⅱ期 | |
胰腺癌 | 临床Ⅱ期 | NCT02310971 | ||
亚单位疫苗 | L-BLP25 | 乳腺癌 | 临床Ⅱ期 | |
非小细胞肺癌 | 临床Ⅱ/Ⅲ期 | |||
多发性骨髓瘤 | 临床Ⅱ期 | |||
转移性结直肠癌 | 临床Ⅱ期 | |||
前列腺癌 | 临床Ⅱ期 | NCT01496131 | ||
MUC1-Poly-ICLC | 结直肠癌 | 临床Ⅰ/Ⅱ期 | ||
ImMucin | 多发性骨髓瘤 | 临床Ⅰ/Ⅱ期 | ||
糖肽疫苗 | ONT-10 | 乳腺癌、卵巢癌 | 临床Ⅰ期 | NCT02270372 |
实体瘤 | 临床Ⅰ期 | NCT01556789 | ||
Theratope | 转移性乳腺癌 | 临床Ⅲ期 |
图1 靶向MUC的抗肿瘤治疗候选药物注:1—小分子抑制剂,如GO-203,可直接与MUC1-C结合从而阻断MUC1的同源二聚化,最终达到抗肿瘤效果;miR-145能够抑制MUC1的表达从而诱导癌细胞凋亡。2—抗体相关抑制剂,MUC的胞外结构域是单克隆抗体的潜在靶点,这些MUC单克隆抗体可以直接与抗原结合来起到抑制作用;ADC借助抗原抗体特异性结合、细胞内吞以及降解等作用将药物带入癌细胞内并释放;经MUC特异性抗体改造后的CAR-T细胞可以直接识别肿瘤MUC并杀伤肿瘤细胞。3—疫苗,癌症疫苗包括DNA疫苗、病毒载体疫苗、DC疫苗、亚单位疫苗以及糖肽疫苗。
Fig. 1 Candidate drugs for anti-tumor therapy targeting MUC
1 | LEE D, CHOI S, PARK Y, et al.. Mucin1 and Mucin16: therapeutic targets for cancer therapy[J/OL]. Pharmaceuticals, 2021, 14(10): 1053[2023-02-16]. . |
2 | LI W, HAN Y, SUN C, et al.. Novel insights into the roles and therapeutic implications of MUC1 oncoprotein via regulating proteins and non-coding RNAs in cancer[J]. Theranostics, 2022, 12(3): 999-1011. |
3 | RACHAGANI S, TORRES M P, MONIAUX N, et al.. Current status of mucins in the diagnosis and therapy of cancer[J]. Biofactors, 2009, 35(6): 509-527. |
4 | SHENG Y H, HASNAIN S Z. Mucus and mucins: the underappreciated host defence system[J/OL]. Front. Cell. Infect. Microbiol., 2022, 12: 856962[2023-02-16]. . |
5 | LI Z, YANG D, GUO T, et al.. Advances in MUC1-mediated breast cancer immunotherapy[J/OL]. Biomolecules, 2022, 12(7): 952[2023-02-16]. . |
6 | MA Q, SONG J, WANG S, et al.. MUC1 regulates AKT signaling pathway by upregulating EGFR expression in ovarian cancer cells[J/OL]. Pathol. Res. Pract., 2021, 224: 153509[2023-02-16]. . |
7 | XIA C, DONG X, LI H, et al.. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin. Med. J., 2022, 135(5): 584-590. |
8 | KUFE D W. MUC1-C in chronic inflammation and carcinogenesis; emergence as a target for cancer treatment[J]. Carcinogenesis, 2020, 41(9): 1173-1183. |
9 | RAINA D, AHMAD R, JOSHI M D, et al.. Direct targeting of the Mucin 1 oncoprotein blocks survival and tumorigenicity of human breast carcinoma cells[J]. Cancer Res., 2009, 69(12): 5133-5141. |
10 | SHIBA S, MIKI A, OHZAWA H, et al.. Functional expression of Mucin1 in human duodenal adenocarcinoma[J]. J. Surg. Res., 2019, 238: 79-89. |
11 | ZHAO Y, WU T, WANG L, et al.. Targeting MUC1-C reverses the cisplatin resistance of esophageal squamous cell carcinoma in vitro and in vivo[J]. Transl. Cancer Res., 2021, 10(2): 645-655. |
12 | SHIGETA K, HASEGAWA M, KIKUCHI E, et al.. Role of the MUC1-C oncoprotein in the acquisition of cisplatin resistance by urothelial carcinoma[J]. Cancer Sci., 2020, 111(10): 3639-3652. |
13 | WU H, XIAO Z, WANG K, et al.. MiR-145 is downregulated in human ovarian cancer and modulates cell growth and invasion by targeting p70S6K1 and MUC1[J]. Biochem. Biophys. Res. Commun., 2013, 441(4): 693-700. |
14 | WANG X, ZHOU X, ZENG F, et al.. miR-485-5p inhibits the progression of breast cancer cells by negatively regulating MUC1[J]. Breast Cancer, 2020, 27(4): 765-775. |
15 | SRIVASTAVA S K, BHARDWAJ A, SINGH S, et al.. MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells[J]. Carcinogenesis, 2011, 32(12): 1832-1839. |
16 | GONGSUN X, ZHAO Y, JIANG B, et al.. Inhibition of MUC1-C regulates metabolism by AKT pathway in esophageal squamous cell carcinoma[J]. J. Cell. Physiol., 2019, 234(7): 12019-12028. |
17 | TAGDE A, RAJABI H, STROOPINSKY D, et al.. MUC1-C induces DNA methyltransferase 1 and represses tumor suppressor genes in acute myeloid leukemia[J]. Oncotarget, 2016, 7(26): 38974-38987. |
18 | STROOPINSKY D, RAJABI H, NAHAS M, et al.. MUC1-C drives myeloid leukaemogenesis and resistance to treatment by a survivin-mediated mechanism[J]. J. Cell. Mol. Med., 2018, 22(8): 3887-3898. |
19 | YE Z, SHEN N, WENG Y, et al.. Low miR-145 silenced by DNA methylation promotes NSCLC cell proliferation,migration and invasion by targeting mucin 1[J]. Cancer Biol. Ther., 2015, 16(7): 1071-1079. |
20 | TRÉHOUX S, LAHDAOUI F, DELPU Y, et al.. Micro-RNAs miR-29a and miR-330-5p function as tumor suppressors by targeting the MUC1 mucin in pancreatic cancer cells[J]. BBA Mol. Cell Res., 2015, 1853(10): 2392-2403. |
21 | LI X, ZHOU L, LUO H, et al.. The long noncoding RNA MIR210HG promotes tumor metastasis by acting as a ceRNA of miR-1226-3p to regulate mucin-1c expression in invasive breast cancer[J]. Aging, 2019, 11(15): 5646-5665. |
22 | RADHAKRISHNAN P, MOHR A M, GRANDGENETT P M, et al.. MicroRNA-200c modulates the expression of MUC4 and MUC16 by directly targeting their coding sequences in human pancreatic cancer[J/OL]. PLoS ONE, 2013, 8(10): e73356[2023-02-16]. . |
23 | BOSE M, SANDERS A, DE C, et al.. Targeting tumor-associated MUC1 overcomes anoikis-resistance in pancreatic cancer[J]. Transl. Res., 2023, 253: 41-56. |
24 | DANIELCZYK A, STAHN R, FAULSTICH D, et al.. PankoMab: a potent new generation anti-tumour MUC1 antibody[J]. Cancer Immunol. Immun., 2006, 55(11): 1337-1347. |
25 | FIEDLER W, DEDOSSO S, CRESTA S, et al.. A phase I study of PankoMab-GEX, a humanised glyco-optimised monoclonal antibody to a novel tumour-specific MUC1 glycopeptide epitope in patients with advanced carcinomas[J]. Eur. J. Cancer, 2016, 63: 55-63. |
26 | BREWER M, ANGIOLI R, SCAMBIA G, et al.. Front-line chemo-immunotherapy with carboplatin-paclitaxel using oregovomab indirect immunization in advanced ovarian cancer: a randomized phase Ⅱ study[J]. Gynecol. Oncol., 2020, 156(3): 523-529. |
27 | BATTAGLIA A, BUZZONETTI A, FOSSATI M, et al.. Correction to: translational immune correlates of indirect antibody immunization in a randomized phase Ⅱ study using scheduled combination therapy with carboplatin/paclitaxel plus oregovomab in ovarian cancer patients[J/OL]. Cancer Immunol. Immu., 2020, 69(7): 1389[2023-02-16]. . |
28 | NICOLAZZI C, CARON A, TELLIER A, et al.. An antibody-drug conjugate targeting MUC1-associated carbohydrate CA6 shows promising antitumor activities[J]. Mol. Cancer Ther., 2020, 19(8): 1660-1669. |
29 | LEE E K, LIU J F. Antibody-drug conjugates in gynecologic malignancies[J]. Gynecol. Oncol., 2019, 153(3): 694-702. |
30 | LIU J F, MOORE K N, BIRRER M J, et al.. Phase I study of safety and pharmacokinetics of the anti-MUC16 antibody-drug conjugate DMUC5754A in patients with platinum-resistant ovarian cancer or unresectable pancreatic cancer[J]. Ann. Oncol., 2016, 27(11): 2124-2130. |
31 | BAYBUTT T R, FLICKINGER J C, CAPAROSA E M, et al.. Advances in chimeric antigen receptor T-cell therapies for solid tumors[J]. Clin. Pharmacol. Ther., 2019, 105(1): 71-78. |
32 | LEDERMANN J A, ZURAWSKI B, RASPAGLIESI F, et al.. Maintenance therapy of patients with recurrent epithelial ovarian carcinoma with the anti-tumor-associated-mucin-1 antibody gatipotuzumab: results from a double-blind, placebo-controlled, randomized, phase Ⅱ study[J/OL]. ESMO Open, 2022, 7(1): 100311[2023-02-16]. . |
33 | PAN D, TANG Y, TONG J, et al.. An antibody-drug conjugate targeting a GSTA glycosite-signature epitope of MUC1 expressed by non-small cell lung cancer[J]. Cancer Med., 2020, 9(24): 9529-9540. |
34 | PANCHAMOORTHY G, JIN C, RAINA D, et al.. Targeting the human MUC1-C oncoprotein with an antibody-drug conjugate[J/OL]. JCI Insight, 2018, 3(12): 99880[2023-02-16]. . |
35 | ZHOU R, YAZDANIFAR M, ROY L D, et al.. CAR T cells targeting the tumor MUC1 glycoprotein reduce triple-negative breast cancer growth[J/OL]. Front. Immunol., 2019, 10: 01149[2023-02-16]. . |
36 | MEI Z, ZHANG K, LAM A K Y, et al.. MUC1 as a target for CAR-T therapy in head and neck squamous cell carinoma[J]. Cancer Med., 2020, 9(2): 640-652. |
37 | GONG Y F, ZHOU Q B, LIAO Y D, et al.. Optimized construction of MUC1-VNTR(n) DNA vaccine and its anti-pancreatic cancer efficacy[J]. Oncol. Lett., 2017, 13(4): 2198-2206. |
38 | SON H, JEONG H, APOSTOLOPOULOS V, et al.. MUC1 expressing tumor growth was retarded after human mucin 1 (MUC1) plasmid DNA immunization[J/OL]. Int. J. Immunopathol. Pharmacol., 2022, 36:1042695475[2023-02-16]. . |
39 | GAO T, CEN Q, LEI H. A review on development of MUC1-based cancer vaccine[J/OL]. Biomed. Pharmacother., 2020, 132: 110888[2023-02-16]. . |
40 | ARRIOLA E, OTTENSMEIER C. TG4010: a vaccine with a therapeutic role in cancer[J]. Immunotherapy, 2016, 8(5): 511-519. |
41 | QUOIX E, LENA H, LOSONCZY G, et al.. TG4010 immunotherapy and first-line chemotherapy for advanced non-small-cell lung cancer (TIME): results from the phase 2b part of a randomised, double-blind, placebo-controlled, phase 2b/3 trial[J]. Lancet Oncol. 2016, 17(2): 212-223. |
42 | GATTI-MAYS M E, REDMAN J M, DONAHUE R N, et al.. A phase I trial using a multitargeted recombinant adenovirus 5 (CEA/MUC1/Brachyury)-based immunotherapy vaccine regimen in patients with advanced cancer[J]. Oncologist, 2020, 25(6): 479-899. |
43 | GRAY H J, BENIGNO B, BEREK J, et al.. Progression-free and overall survival in ovarian cancer patients treated with CVac, a mucin 1 dendritic cell therapy in a randomized phase 2 trial[J/OL]. J. Immunother. Cancer, 2016, 4(1): 0137x[2023-02-16]. . |
44 | PAN J, ZENG W, JIA J, et al.. A novel therapeutic tumor vaccine targeting MUC1 in combination with PD-L1 elicits specific anti-tumor immunity in mice[J/OL]. Vaccines, 2022, 10(7): 1092[2023-02-16]. . |
45 | SHINDO Y, HAZAMA S, MAEDA Y, et al.. Adoptive immunotherapy with MUC1-mRNA transfected dendritic cells and cytotoxic lymphocytes plus gemcitabine for unresectable pancreatic cancer[J/OL]. J. Transl. Med., 2014, 12(1): 175[2023-02-16]. . |
46 | CHEN J, GUO X, LI H, et al.. Generation of CTL responses against pancreatic cancer in vitro using dendritic cells co-transfected with MUC4 and survivin RNA[J]. Vaccine, 2013, 31(41): 4585-4590. |
47 | CARMON L, AVIVI I, KOVJAZIN R, et al.. Phase Ⅰ/Ⅱ study exploring ImMucin, a pan-major histocompatibility complex, anti-MUC1 signal peptide vaccine, in multiple myeloma patients[J]. Br. J. Haematol., 2015, 169(1): 44-56. |
48 | WONG J C, LAO C T, YOUSIF M M, et al.. Fast tracking-vaccine safety, efficacy, and lessons learned: a narrative review[J/OL]. Vaccines, 2022, 10(8): 1256[2023-02-16]. . |
49 | BROCKHAUSEN I, MELAMED J. Mucins as anti-cancer targets: perspectives of the glycobiologist[J]. Glycoconjugate J., 2021, 38(4): 459-474. |
50 | CAI H, CHEN M, SUN Z, et al.. Self-adjuvanting synthetic antitumor vaccines from MUC1 glycopeptides conjugated to T-cell epitopes from tetanus toxoid[J]. Angew. Chem. Int. Edit., 2013, 52(23): 6106-6110. |
51 | BRINÃS R P, SUNDGREN A, SAHOO P, et al.. Design and synthesis of multifunctional gold nanoparticles bearing tumor-associated glycopeptide antigens as potential cancer vaccines[J]. Bioconjugate Chem., 2012, 23(8): 1513-1523. |
52 | LIU C, XIE Y, SUN B, et al.. MUC1- and survivin-based DNA vaccine combining immunoadjuvants CpG and interleukin-2 in a bicistronic expression plasmid generates specific immune responses and antitumour effects in a murine colorectal carcinoma model[J]. Scand. J. Immunol., 2018, 87(2): 63-72. |
53 | ARRIOLA E, OTTENSMEIER C. TG4010: a vaccine with a therapeutic role in cancer[J]. Immunotherapy, 2016, 8(5): 511-519. |
54 | BILUSIC M, MCMAHON S, MADAN R A, et al.. Phase I study of a multitargeted recombinant Ad5 PSA/MUC-1/brachyury-based immunotherapy vaccine in patients with metastatic castration-resistant prostate cancer (mCRPC)[J/OL]. J. Immunother. Cancer, 2021, 9(3): e2374 [2023-02-16]. . |
55 | SINGER C F, PFEILER G, HUBALEK M, et al.. Efficacy and safety of the therapeutic cancer vaccine tecemotide (L-BLP25) in early breast cancer: results from a prospective, randomised, neoadjuvant phase Ⅱ study (ABCSG 34)[J]. Eur. J. Cancer, 2020, 132: 43-52. |
56 | BUTTS C D, SOCINSKI M A P, MITCHELL P L M, et al.. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage Ⅲ non-small-cell lung cancer (START): a randomised, double-blind, phase 3 trial[J]. Lancet Oncol., 2014, 15(1): 59-68. |
57 | XIA W, WANG J, XU Y, et al.. L-BLP25 as a peptide vaccine therapy in non-small cell lung cancer: a review[J]. J. Thorac. Dis., 2014, 6(10): 1513-1520. |
58 | ROSSMANN E, OSTERBORG A, LOFVENBERG E, et al.. Mucin 1-specific active cancer immunotherapy with tecemotide (L-BLP25) in patients with multiple myeloma: an exploratory study[J]. Hum.Vacc. Immunother., 2014, 10(11): 3394-3408. |
59 | MOEHLER M, FOLPRECHT G, HEINEMANN V, et al.. Survival after secondary liver resection in metastatic colorectal cancer: comparing data of three prospective randomized European trials (LICC,CELIM,FIRE-3)[J]. Int. J. Cancer, 2022, 150(8): 1341-1349. |
60 | SCHIMANSKI C C, KASPER S, HEGEWISCH-BECKER S, et al.. Adjuvant MUC vaccination with tecemotide after resection of colorectal liver metastases: a randomized, double-blind, placebo-controlled, multicenter AIO phase Ⅱ trial (LICC)[J/OL]. Onco. Immunol., 2020, 9(1): 1806680[2023-02-16]. . |
61 | KIMURA T, MCKOLANIS J R, DZUBINSKI L A, et al.. MUC1 vaccine for individuals with advanced adenoma of the colon: a cancer immunoprevention feasibility study[J]. Cancer Prev. Res., 2013, 6(1): 18-26. |
62 | MILES D, ROCHÉ H, MARTIN M, et al.. Phase Ⅲ multicenter clinical trial of the Sialyl-Tn (STn)-keyhole limpet hemocyanin (KLH) vaccine for metastatic breast cancer[J]. Oncologist, 2011, 16(8): 1092-1100. |
63 | IBRAHIM N K, MURRAY J L, ZHOU D, et al.. Survival advantage in patients with metastatic breast cancer receiving endocrine therapy plus Sialyl Tn-KLH vaccine: post hoc analysis of a large randomized trial[J]. J. Cancer, 2013, 4(7): 577-584. |
64 | BARROS L, COUTO S, DA S S D, et al.. Systematic review of available CAR-T cell trials around the world[J/OL]. Cancers, 2022, 14(11): 2667[2023-02-16]. . |
65 | GAUTAM S K, KUMAR S, CANNON A, et al.. MUC4 mucin-a therapeutic target for pancreatic ductal adenocarcinoma[J]. Expert Opin. Ther. Tar., 2017, 21(7): 657-669. |
66 | STERGIOU N, URSCHBACH M, GABBA A, et al.. The development of vaccines from synthetic tumor-associated mucin glycopeptides and their glycosylation-dependent immune response[J]. Chem. Rec., 2021, 21(11): 3313-3331. |
[1] | 李永超, 杨昭. 双特异抗体药物研发现状及发展对策[J]. 生物技术进展, 2023, 13(3): 353-358. |
[2] | 唐颖, 武建强. 肉苁蓉苯乙醇苷的抗肿瘤作用[J]. 生物技术进展, 2023, 13(3): 399-405. |
[3] | 董立强, 王斌, 苏适, 刘东琦. 雷公藤红素抗肿瘤作用及机制研究进展[J]. 生物技术进展, 2023, 13(1): 77-82. |
[4] | 陈小巧, 牧仁, 李玉玲. 脐带间充质干细胞的生物学特性及旁分泌作用的研究进展[J]. 生物技术进展, 2022, 12(4): 559-567. |
[5] | 王彩虹, 陈剑飞, 鞠久君, 朱雪洁, 王彩霞. PKM2促进肿瘤发展的作用机制研究[J]. 生物技术进展, 2022, 12(3): 411-418. |
[6] | 李文桂, 陈雅棠. 重组金丝雀痘病毒载体疫苗研制进展[J]. 生物技术进展, 2022, 12(1): 36-43. |
[7] | 王林琳, 孙振亮. 氨基酸转运体在肿瘤代谢中的研究进展[J]. 生物技术进展, 2022, 12(1): 50-56. |
[8] | 李征, 郑亚民, 张小农. 镁离子与肿瘤的相关关系[J]. 生物技术进展, 2022, 12(1): 63-67. |
[9] | 李丹, 宋浩志, 高维崧, 刘兴健, 张志芳, 李轶女. 小反刍兽疫病毒H蛋白的原核表达及免疫原性测定[J]. 生物技术进展, 2021, 11(6): 770-776. |
[10] | 赵鹏翔, 谢飞, 刘梦昱, ADZAVON Yao Mawulikplimi, 马雪梅. 氢气生物医学研究进展[J]. 生物技术进展, 2021, 11(4): 503-517. |
[11] | 刘程林子,吴耀钦,黄恩泽,徐瑞丰,郑鹏,. 双硫仑抗癌作用研究进展[J]. 生物技术进展, 2021, 11(2): 155-162. |
[12] | 张迪迪,顾宇轩,孙霄麟,张丽娜. FAM96A和FAM96B结构与功能的研究进展[J]. 生物技术进展, 2021, 11(1): 26-32. |
[13] | 姚舜禹,张丽琳. 新城疫疫苗研究进展[J]. 生物技术进展, 2020, 10(5): 470-478. |
[14] | 商蕾,李佳腊,苏泽华,谢飞,马雪梅. 氢分子对肝癌细胞Huh7的影响[J]. 生物技术进展, 2020, 10(4): 400-408. |
[15] | 刘诗博,吴昊,洪焦,刘梦昱,YAO Mawulikplimi Adzavon,赵鹏翔. 炎症-肿瘤转化在眼部相关疾病中的研究进展[J]. 生物技术进展, 2020, 10(3): 234-241. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部