1 |
BODE B. Recent molecular advances in mammalian glutamine transport[J]. J. Nutr., 2001, 131(9): 2475-2485.
|
2 |
GANAPATHY V, THANGARAJU M, PRASAD P D. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond[J]. Pharmacol. Ther., 2009, 121(1): 29-40.
|
3 |
ZOU Z, TAO T, LI H, et al.. mTOR signaling pathway and mTOR inhibitors in cancer: progress and challenges[J/OL]. Cell Biosci., 2020, 10: 31[2021-11-01]. .
|
4 |
KANAI Y, CLEMENCON B, SIMONIN A, et al.. The SLC1 high-affinity glutamate and neutral amino acid transporter family [J]. Mol. Aspects Med., 2013, 34(2-3): 108-120.
|
5 |
GARIBSINGH R A, OTTE N J, NDARU E, et al.. Homology modeling informs ligand discovery for the glutamine transporter ASCT2[J/OL]. Front. Chem., 2018, 6:279[2021-11-03]. .
|
6 |
SCALISE M, POCHINI L, GALLUCCIO M, et al. Glutamine transport and mitochondrial metabolism in cancer cell growth[J/OL]. Front. Oncol., 2017, 7: 306[2021-11-01]. .
|
7 |
SCALISE M, POCHINI L, CONSOLE L, et al.. The human SLC1A5 ASCT2 amino acid transporter: from function to structure and role in cell biology [J/OL]. Front. Cell Dev. Biol., 2018, 6: 96[2021-11-03]. .
|
8 |
BOTT A J, SHEN J, TONELLI C, et al.. Glutamine anabolism plays a critical role in pancreatic cancer by coupling carbon and nitrogen metabolism[J]. Cell Rep., 2019, 29(5): 1287-1298.
|
9 |
LI L, MENG Y, LI Z, et al.. Discovery and development of small molecule modulators targeting glutamine metabolism [J]. Eur. J. Med. Chem., 2019, 163: 215-242.
|
10 |
KATT W P, CERIONE R A. Glutaminase regulation in cancer cells: a druggable chain of events [J]. Drug Discov. Today, 2014, 19(4): 450-457.
|
11 |
LIU Y, ZHAO T, LI Z, et al.. The role of ASCT2 in cancer: a review[J]. Eur. J. Pharmacol., 2018, 837: 81-87.
|
12 |
HASSANEIN M, QIAN J, HOEKSEMA M D, et al.. Targeting SLC1a5-mediated glutamine dependence in non-small cell lung cancer[J]. Int. J. Cancer, 2015, 137(7): 1587-1597.
|
13 |
AVISSAR N E, SAX H C, TOIA L. In human entrocytes, GLN transport and ASCT2 surface expression induced by short-term EGF are MAPK, PI3K, and Rho-dependent[J]. Dig. Dis. Sci., 2008, 53(8): 2113-2125.
|
14 |
LUO Y, LI W, LING Z, et al.. ASCT2 overexpression is associated with poor survival of OSCC patients and ASCT2 knockdown inhibited growth of glutamine-addicted OSCC cells[J]. Cancer Med., 2020, 9(10): 3489-3499.
|
15 |
WANG L, LIU Y, ZHAO T L, et al.. Topotecan induces apoptosis via ASCT2 mediated oxidative stress in gastric cancer[J]. Phytomedicine, 2019, 57: 117-128.
|
16 |
PALII S S, THIAVILLE M M, PAN Y X, et al.. Characterization of the amino acid response element within the human sodium-coupled neutral amino acid transporter 2 (SNAT2) system A transporter gene[J]. Biochem. J., 2006, 395(3): 517-527.
|
17 |
BROER A, RAHIMI F, BROER S. Deletion of amino acid transporter ASCT2 (SLC1A5) reveals an essential role for transporters SNAT1 (SLC38A1) and SNAT2 (SLC38A2) to sustain glutaminolysis in cancer cells[J]. J. Biol. Chem., 2016, 291(25): 13194-13205.
|
18 |
MOROTTI M, BRIDGES E, VALLI A, et al.. Hypoxia-induced switch in SNAT2/SLC38A2 regulation generates endocrine resistance in breast cancer [J]. Proc. Natl. Acad. Sci. USA, 2019, 116(25): 12452-12461.
|
19 |
SAMLUK L, CZEREDYS M, SKOWRONEK K, et al.. Protein kinase C regulates amino acid transporter ATB(0,+)[J]. Biochem. Biophys. Res. Commun., 2012, 422(1): 64-69.
|
20 |
ROGALA-KOZIARSKA K, SAMLUK L, NALECZ K A. Amino acid transporter SLC6A14 depends on heat shock protein HSP90 in trafficking to the cell surface[J]. Biochim. Biophys. Acta. Mol. Cell Res., 2019, 1866(10): 1544-1555.
|
21 |
KARUNAKARAN S, RAMACHANDRAN S, COOTHANKANDASWAMY V, et al.. SLC6A14 (ATB0,+) protein, a highly concentrative and broad specific amino acid transporter, is a novel and effective drug target for treatment of estrogen receptor-positive breast cancer [J]. J. Biol. Chem., 2011, 286(36): 31830-31838.
|
22 |
LUO Q, YANG B, TAO W, et al.. (ATB0,+) transporter-mediated targeting delivery to human lung cancer cells via aspartate-modified docetaxel-loading stealth liposomes[J]. Biomater Sci., 2017, 5(2): 295-304.
|
23 |
NALECZ K A. Amino acid transporter SLC6A14 (ATB0,+)-a target in combined anti-cancer therapy [J/OL]. Front. Cell Dev. Biol., 2020, 8: 594464[2021-11-01]. .
|
24 |
KOU L, HUANG H, LIN X, et al. Endocytosis of (ATB0,+) (SLC6A14)-targeted liposomes for drug delivery and its therapeutic application for pancreatic cancer [J]. Expert Opin. Drug Deliv., 2020, 17(3): 395-405.
|
25 |
CHAFAI A, FROMM M F, KONIG J, et al.. The prognostic biomarker L-homoarginine is a substrate of the cationic amino acid transporters CAT1, CAT2A and CAT2B[J/OL]. Sci. Rep., 2017, 7(1): 4767[2021-11-01]. .
|
26 |
HATZOGLOU M, FERNANDEZ J, YAMAN I, et al.. Regulation of cationic amino acid transport: the story of the CAT-1 transporter[J]. Annu. Rev. Nutr., 2004, 24: 377-399.
|
27 |
ABDELMAGID S A, RICKARD J A, MCDONALD W J, et al.. CAT-1-mediated arginine uptake and regulation of nitric oxide synthases for the survival of human breast cancer cell lines [J]. J. Cell Biochem., 2011, 112(4): 1084-1092.
|
28 |
PENG J B, ZHUANG L, BERGER U V, et al.. CaT1 expression correlates with tumor grade in prostate cancer[J]. Biochem. Biophys. Res. Commun., 2001, 282(3): 729-734.
|
29 |
COBURN L A, SINGH K, ASIM M, et al.. Loss of solute carrier family 7 member 2 exacerbates inflammation-associated colon tumorigenesis[J]. Oncogene, 2019, 38(7): 1067-1079.
|
30 |
SUN T, BI F, LIU Z, et al.. SLC7A2 serves as a potential biomarker and therapeutic target for ovarian cancer[J]. AGING, 2020, 12(13): 13281-13296.
|
31 |
KESAVARDHANA S, KANNEGANTI T D. Targeting apoptosis inhibition to activate antitumor immunity[J]. Trends Immunol., 2019, 40(12): 1073-1075.
|
32 |
NAVA C, RUPP J, BOISSEL J P, et al.. Hypomorphic variants of cationic amino acid transporter 3 in males with autism spectrum disorders[J]. Amino Acids, 2015, 47(12): 2647-2658.
|
33 |
LOWMAN X H, HANSE E A, YANG Y, et al.. p53 promotes cancer cell adaptation to glutamine deprivation by upregulating Slc7a3 to increase arginine uptake[J]. Cell Rep., 2019, 26(11): 3051-3060.
|
34 |
JANUCHOWSKI R, ZAWIERUCHA P, ANDRZEJEWSKA M, et al.. Microarray-based detection and expression analysis of ABC and SLC transporters in drug-resistant ovarian cancer cell lines[J]. Biomed. Pharm., 2013, 67(3): 240-245.
|
35 |
ZHAO Y, WANG L, PAN J. The role of L-type amino acid transporter 1 in human tumors[J]. Intract. Rare Dis. Res., 2015, 4(4): 165-169.
|
36 |
KOSHI H, SANO T, HANDA T, et al.. L-type amino acid transporter-1 and CD98 expression in bone and soft tissue tumors [J]. Pathol. Int., 2015, 65(9): 460-467.
|
37 |
QUAN L, OHGAKI R, HARA S, et al.. Amino acid transporter LAT1 in tumor-associated vascular endothelium promotes angiogenesis by regulating cell proliferation and VEGF-A-dependent mTORC1 activation[J/OL]. J. Exp. Clin. Cancer Res., 2020, 39(1): 266[2021-11-01]. .
|
38 |
DANN S G, RYSKIN M, BARSOTTI A M, et al.. Reciprocal regulation of amino acid import and epigenetic state through Lat1 and EZH2 [J]. EMBO J., 2015, 34(13): 1773-1785.
|
39 |
HAFLIGER P, GRAFF J, RUBIN M, et al.. The LAT1 inhibitor JPH203 reduces growth of thyroid carcinoma in a fully immunocompetent mouse model[J/OL]. J. Exp. Clin. Cancer Res., 2018, 37(1): 234[2021-11-01]. .
|
40 |
FENG M, XIONG G, CAO Z, et al.. LAT2 regulates glutamine-dependent mTOR activation to promote glycolysis and chemoresistance in pancreatic cancer[J/OL]. J. Exp. Clin. Cancer Res., 2018, 37(1): 274[2021-11-01]. .
|
41 |
ARENSMAN M D, YANG X S, LEAHY D M, et al.. Cystine-glutamate antiporter xCT deficiency suppresses tumor growth while preserving antitumor immunity[J]. Proc. Natl. Acad. Sci. USA, 2019, 116(19): 9533-9542.
|
42 |
LIU L, LIU R, LIU Y, et al.. Cystine-glutamate antiporter xCT as a therapeutic target for cancer[J]. Cell Biochem. Funct., 2020, 39(2): 174-179.
|
43 |
Sehm T, Rauh M, Wiendieck K, et al.. Temozolomide toxicity operates in a xCT/SLC7a11 dependent manner and is fostered by ferroptosis[J]. Oncotarget, 2016, 7(46): 74630-74647.
|
44 |
HANAHAN D, WEINBERG R A. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
|
45 |
SCALISE M, CONSOLE L, ROVELLA F, et al.. Membrane transporters for amino acids as players of cancer metabolic rewiring[J/OL]. Cells, 2020, 9(9): 2028[2021-11-01]. .
|
46 |
CHEN Q, ZHOU J, CHEN Z, et al.. Tumor-specific expansion of oxidative stress by glutathione depletion and use of a fenton nanoagent for enhanced chemodynamic therapy[J]. ACS Appl. Mater. Interf., 2019, 11(34): 30551-30565.
|
47 |
TANABE A, KIMURA K, TAZAWA H, et al.. Functional analysis of CD44 variants and xCT in canine tumours[J]. Vet. Med. Sci., 2020, 7(2): 577-585.
|
48 |
NAKAYA M, XIAO Y, ZHOU X, et al.. Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation[J]. Immunity, 2014, 40(5): 692-705.
|
49 |
BROER A, GAUTHIER-COLES G, RAHIMI F, et al.. Ablation of the ASCT2 (SLC1A5) gene encoding a neutral amino acid transporter reveals transporter plasticity and redundancy in cancer cells[J]. J. Biol. Chem., 2019, 294(11): 4012-4026.
|