生物技术进展 ›› 2023, Vol. 13 ›› Issue (1): 77-82.DOI: 10.19586/j.2095-2341.2022.0167
收稿日期:
2022-10-11
接受日期:
2022-11-01
出版日期:
2023-01-25
发布日期:
2023-02-07
作者简介:
董立强 E-mail: dlq1930@126.com
基金资助:
Liqiang DONG(), Bin WANG, Shi SU, Dongqi LIU
Received:
2022-10-11
Accepted:
2022-11-01
Online:
2023-01-25
Published:
2023-02-07
摘要:
雷公藤红素是我国传统中药雷公藤中的天然活性成分,具有抗类风湿、抗炎、抗肿瘤等多种生物学活性。近年来,雷公藤红素由于低毒、多靶点、广谱性等优势,在抗肿瘤治疗中备受关注。雷公藤红素可以通过调控PI3K/AKT、NF-κB、MAPK和STAT3等多种信号通路抑制肿瘤增殖、侵袭和转移,诱导肿瘤细胞凋亡。综述了雷公藤红素的抗肿瘤作用及机制,以期促进雷公藤红素的深入研究与应用。
中图分类号:
董立强, 王斌, 苏适, 刘东琦. 雷公藤红素抗肿瘤作用及机制研究进展[J]. 生物技术进展, 2023, 13(1): 77-82.
Liqiang DONG, Bin WANG, Shi SU, Dongqi LIU. Progress on Celastrol in Anti-tumor Effects and Mechanism[J]. Current Biotechnology, 2023, 13(1): 77-82.
1 | LU Y, LIU Y, ZHOU J W, et al.. Biosynthesis, total synthesis, structural modifications, bioactiity, and mechanism of action of the quinone-methide triterpenoid celastrol[J]. Med. Res. Rev., 2021, 41(2): 1022-1060. |
2 | QIU N S, LIU Y, LIU Q, et al.. Celastrol nanoemulsion induces immunogenicity and downregulates PD-L1 to boost abscopal effect in melanoma therapy[J/OL]. Biomaterials, 2021, 269: 120604[2020-12-17]. . |
3 | CARUSO F, SINGH M, BELLI S, et al.. Interrelated mechanism by which the methide quinone celastrol, obtained from the roots of Tripterygium wilfordii, inhibits main protease 3CL of COVID-19 and acts as superoxide radical scavenger[J/OL]. Int. J. Mol. Sci., 2020, 21(23): 9266[2020-10-04]. . |
4 | WANG Y Q, LI C L, GU J Y, et al.. Celastrol exerts anti-inflammatory effect in liver fibrosis via activation of AMPK-SIRT3 signalling[J]. J. Cell Mol. Med., 2020, 24(1): 941-953. |
5 | SHI J F, LI J X, XU Z Y, et al.. Celastrol: a review of useful strategies overcoming its limitation in anticancer application[J/OL]. Front Pharmacol., 2020, 11: 558741[2020-11-18]. . |
6 | NG S W, CHAN Y, CHELLAPPAN D K, et al.. Molecular modulators of celastrol as the key stones for its diverse pharmacological activities[J]. Biomed. Pharmacother., 2019, 109: 1785-1792. |
7 | KHAN M G M, WANG Y. Cell cycle-related clinical applications[J]. Methods Mol. Biol., 2022, 2579: 35-46. |
8 | QIAN J, ZHANG Z, HAN X, et al.. Radiosensitizing effect of celastrol by inhibiting G2/M phase arrest induced by the c-myc gene of human SW1353 chondrosarcoma cells: network and experimental analyses[J/OL]. Biomed. Res. Int., 2022: 1948657[2022-01-31]. . |
9 | SHA M, YE J, LUAN Z Y, et al.. Celastrol induces cell cycle arrest by MicroRNA-21-mTOR-mediated inhibition p27 protein degradation in gastric cancer[J/OL]. Cancer Cell Int., 2015, 15: 101[2015-10-24]. . |
10 | FRIEDAN J R, RICHBART S D, MERRITT J C, et al.. Capsaicinoids: multiple effects on angiogenesis, invasion and metastasis in human cancers[J/OL]. Biomed. Pharmacother., 2019, 118: 109317[2019-10-01]. . |
11 | DU S H, SONG X Y, LI Y, et al.. Celastrol inhibits ezrin-mediated migration of hepatocellular carcinoma cells[J/OL]. Sci. Rep., 2020, 10(1): 11273[2020-07-09]. . |
12 | KIM Y, KANG H, JANG S W, et al.. Celastrol inhibits breast cancer cell invasion via suppression of NF-ĸB-mediated matrix metallo proteinase-9 expression[J]. Cell Physiol. Biochem., 2011, 28(2): 175-184. |
13 | HARLOZINSKA A. Progress in molecular mechanisms of tumor metastasis and angiogenesis[J]. Anticancer Res., 2005, 25(5): 3327-3333. |
14 | YANG F, GUO Z H, SHI L Q, et al.. Antiangiogenic and antitumor therapy for retinoblastoma with hypoxia-inducible factor-1α siRNA and celastrol co-delivery nanomicelles[J]. J. Biomed. Nanotechnol., 2020, 16(10): 1471-1481. |
15 | GAO Y F, ZHOU S, PANG L Z, et al.. Celastrol suppresses nitric oxide synthases and the angiogenesis pathway in colorectal cancer[J]. Free Radic. Res., 2019, 53(3): 324-334. |
16 | PANG X F, YI Z F, ZHANG J, et al.. Celastrol suppresses angiogenesis-mediated tumor growth through inhibition of AKT/mammalian target of rapamycin pathway[J]. Cancer Res., 2010, 70(3): 1951-1959. |
17 | YU X L, ZHOU X, FU C L, et al.. Celastrol induces apoptosis of human osteosarcoma cells via the mitochondrial apoptotic pathway[J]. Oncol. Rep., 2015, 34(3): 1129-1136. |
18 | MOU H, ZHENG Y, ZHAO P, et al.. Celastrol induces apoptosis in non-small-cell lung cancer A549 cells through activation of mitochondria-and Fas/FasL-mediated pathways[J]. Toxicol. In. Vitro., 2011, 25(5): 1027-1032. |
19 | ELLIS H, MA C X. PI3K inhibitors in breast cancer therapy[J/OL]. Curr. Oncol. Rep., 2019, 21(12):110[2019-12-11]. . |
20 | DUNCAN L, SHAY C, TENG Y. PI3K isoform-selective inhibitors in cancer[J]. Adv. Exp. Med. Biol., 2020, 1255: 165-173. |
21 | ZHU B Q, WEI Y W. Antitumor activity of celastrol by inhibition of proliferation, invasion, and migration in cholangiocarcinoma via PTEN/PI3K/Akt pathway[J]. Cancer Med., 2020, 9(2): 783-796. |
22 | ZHU Y J, LIU X H, ZHAO P Y, et al.. Celastrol suppresses Glioma vasculogenic mimicry formation and angiogenesis by blocking the PI3K/Akt/mTOR signaling pathway[J/OL]. Front. Pharmacol., 2020, 11: 25[2020-02-06]. . |
23 | KANNAIYAN R, MANU K A, CEN L, et al.. Celastrol inhibits tumor cell proliferation and promotes apoptosis through the activation of c-Jun N-terminal kinase and suppression of PI3K/Akt signaling pathways[J]. Apoptosis, 2011, 16(10): 1028-1041. |
24 | YAO S S, HAN L, TIAN Z B, et al.. Celastrol inhibits growth and metastasis of human gastric cancer cell MKN45 by down-regulating microRNA-21[J]. Phytother. Res., 2019, 33(6): 1706-1716. |
25 | BUF T, DI X, YILIN Z, et al.. Celastrol inhibits colorectal cancer cell proliferation and migration through suppression of MMP3 and MMP7 by the PI3K/AKT signaling pathway[J]. Anti-cancer Drug., 2018, 29(6): 530-538. |
26 | SHRIVASTAVA S, JEENGAR M K, REDDY V S, et al.. Anticancer effect of celastrol on human triple negative breast cancer: possible involvement of oxidative stress, mitochondrial dysfunction, apoptosis and PI3K/Akt pathways[J]. Exp. Mol. Pathol., 2015, 98(3): 313-327. |
27 | LEE J H, WON Y S, PARK K H, et al.. Celastrol inhibits growth and induces apoptotic cell death in melanoma cells via the activation ROS-dependent mitochondrial pathway and the suppression of PI3K/AKT signaling[J]. Apoptosis, 2012, 17(12): 1275-1286. |
28 | LIN Y G, KUNNUMAKKARA A B, NAIR A, et al.. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway[J]. Clin. Cancer Res., 2007, 13(11): 3423-3430. |
29 | VERBOOM L, HOSTE E, VANN L G. OTULIN in NF-κB signaling, cell death, and disease[J]. Trends. Immunol., 2021, 42(7): 590-603. |
30 | YANG F, LIU H, YU Y, et al.. TRIM9 overexpression promotes uterine leiomyoma cell prolif eration and inhibits cell apoptosis via NF-κB signaling pathway[J/OL]. Life Sci., 2020, 257:118101[2020-07-15]. . |
31 | RASMI R R, SAKTHIVEL K M, GURUVAYOORAPPAN C. NF-κB inhibitors in treatment and prevention of lung cancer[J/OL]. Biomed. Pharmacother., 2020, 130: 110569[2022-10-01]. . |
32 | TOZAMA K, SAGAWA M, KIZAKI M. Quinone methide tripterine, celastrol, induces apoptosis in human myeloma cells via NF-κB pathway[J]. Int. J. Oncol., 2011, 39(5): 1117-1122. |
33 | YAN F, WU Z, LI Z, et al.. Celastrol inhibits migration and invasion of triple-negative breast cancer cells by suppressing interleukin-6 via downregulating nuclear factor-κB (NF-κB)[J/OL]. Med. Sci. Monit., 2020, 26: e922814[2020-09-13]. . |
34 | WANG Z, ZHAI Z, DU X. Celastrol inhibits migration and invasion through blocking the NF-κB pathway in ovarian cancer cells[J]. Exp. Ther. Med., 2017, 14(1): 819-824. |
35 | ChIANG K C, TUSI K H, CHUNG L C, et al.. Celastrol blocks interleukin-6 gene expression via downregulation of NF-κB in prostate carcinoma cells[J/OL]. PLoS ONE, 2014, 9: e93151[2014-03-24]. . |
36 | DAI Y, DESANO J, TANG W, et al.. Natural proteasome inhibitor celastrol suppresses andro gen-independent prostate cancer progression by modulating apoptotic proteins and NF-kappaB[J/OL]. PLoS ONE, 2010, 5: e14153[2014-03-24]. . |
37 | YUAN J, DONG X, YAP J, et al.. The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy[J/OL]. J. Hematol. Oncol., 2020, 13 (1): 113[2020-08-17]. . |
38 | ZHU H, LIU X W, CAI T Y, et al.. Celastrol acts as a potent antimetastatic agent targeting beta1 integrin and inhibiting cell-extracellular matrix adhesion, in part via the p38 mitogen-activated protein kinase pathway[J]. J. Pharmacol. Exp. Ther., 2010, 334(2): 489-499. |
39 | HSIEH M J, WANG C W, LIN J T, et al.. Celastrol, a plant-derived triterpene, induces cisplatin-resistance nasopharyngeal carcinoma cancer cell apoptosis though ERK1/2 and p38 MAPK signaling pathway[J/OL]. Phytomedicine, 2019, 58: 152805[2019-03-01]. . |
40 | SANTONI M, MICCINI F, CIMADAMORE A, et al.. An update on investigational therapies that target STAT3 for the treatment of cancer[J]. Expert Opin. Investig. Drug. 2021, 30(3): 245-251. |
41 | LI X, WANG H, DING J, et al.. Celastrol strongly inhibits proliferation, migration and cancer stem cell properties through suppression of Pin1 in ovarian cancer cells[J]. Eur. J. Pharmacol., 2019, 842: 146-156. |
42 | YAN Y F, ZHANG H H, LV Q, et al.. Celastrol suppresses the proliferation of lung adenocarci noma cells by regulating microRNA-24 and microRNA-181b[J]. Oncol. Lett., 2018, 15(2): 2515-2521. |
43 | RAJENDRAN P, LI F, SHANMUGAM M K, et al.. Celastrol suppresses growth and induces apoptosis of human hepatocellular carcinoma through the modulation of STAT3/JAK2 signaling cascade in vitro and in vivo[J]. Cancer Prev. Res (Phila)., 2012, 5(4): 631-643. |
44 | SHIN S A, MOON S Y, PARK D, et al.. Apoptotic cell clearance in the tumor microenvironment: a potential cancer therapeutic target[J]. Arch. Pharm. Res., 2019, 42(8): 658-671. |
45 | ABRAHA A M, KETEMA E B. Apoptotic pathways as a therapeutic target for colorectal cancer treatment[J]. World J. Gastrointest. Oncol., 2016, 8(8): 583-591. |
46 | BURKE P J. Mitochondria, bioenergetics and apoptosis in cancer[J]. Trends. Cancer, 2017, 3(12): 857-870. |
47 | CHEN M, YANG J, LI L, et al.. Metabolomics reveals that cysteine metabolism plays a role in celastrol-induced mitochondrial apoptosis in HL-60 and NB-4 cells[J/OL]. Sci .Rep., 2020, 10(1): 471[2020-01-12]. . |
48 | LIU X, GAO R W, LI M, et al.. The ROS derived mitochondrial respirstion not from NADPH oxidase plays key role in celastrol against angiotensin Ⅱ-mediated HepG2 cell proliferation[J]. Apoptosis, 2016, 21(11): 1315-1326. |
49 | DENG H, ZHOU Z, YANG W, et al.. Endoplasmic reticulum targeting to amplify immuno genic cell death for cancer immunotherapy[J]. Nano. Lett., 2020, 20(3): 1928-1933. |
50 | CHEN Y, OU Y, TAO Y, et al.. Effect and mechanisms of celastrol on the apoptosis of HOS osteosarcoma cells[J]. Oncol. Rep., 2018, 40(4): 2260-2268. |
51 | REN B, LIU H, GAU H, et al.. Celastrol induces apoptosis in hepatocellular carcinoma cells via targeting ER-stress/UPR[J]. Oncotarget, 2017, 8(54): 93039-93050. |
52 | FENG L, ZHANG D, FAN C, et al.. ER stress-mediated apoptosis induced by celastrol in cancer cells and important role of glycogen synthase kinase-3β in the signal network[J/OL]. Cell Death Dis., 2013, 4(7): e715[2013-07-11]. . |
53 | SHARMA S, CARMONA A, SKOWRONEK A, et al.. Apoptotic signalling targets the post-endocytic sorting machinery of the death receptor Fas/CD95[J/OL]. Nat. Commun., 2019, 10(1): 3105[2019-07-15]. . |
54 | MAEDA K, NAKAYAMA J, TAKI S, et al.. TAK1 limits death receptor Fas-induced proin flammatory cell death in macrophages[J]. J. Immunol., 2022, 209(6): 1173-1179. |
55 | CHA Z, CHENG J, XIANG H, et al.. Celastrol enhances TRAIL-induced apoptosis in human glioblastoma via the death receptor pathway[J]. Cancer Chemother. Pharmacol., 2019, 84(4): 719-728. |
56 | LIN H F, HSIEH M J, HSI Y T, et al.. Celastrol-induced apoptosis in human nasopharyngeal carcinoma is associated with the activation of the death receptor and the mitochondrial pathway[J]. Oncol. Lett., 2017, 14(2): 1683-1690. |
57 | SUNG B, PARK B, YADAV V R, et al.. Celastrol, a triterpene, enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and up-regulation of death receptors[J]. J. Biol. Chem., 2010, 285(32): 11498-11507. |
58 | RAMAMOORTHY P, DANDAWATE P, JENSEN R A, et al.. Celastrol and triptolide suppress stemness in triple negative breast cancer: notch as a therapeutic target for stem cells[J/OL]. Biomedicines, 2021, 9(5): 482[2021-04-28]. . |
[1] | 徐奔, 覃锐, 向航, 许京淑, 廖子龙, 向金平. 臭椿酮抑制急性骨髓性白血病细胞恶性生物学行为的研究[J]. 生物技术进展, 2022, 12(5): 769-777. |
[2] | 赵佩, 邹青, 李泽霖. 黄芪甲甙对急性心肌梗死大鼠心室重构和NOX/ROS/TNF⁃α信号通路的影响[J]. 生物技术进展, 2022, 12(5): 778-785. |
[3] | 陈小巧, 牧仁, 李玉玲. 脐带间充质干细胞的生物学特性及旁分泌作用的研究进展[J]. 生物技术进展, 2022, 12(4): 559-567. |
[4] | 陈晓光, 潘晓峰, 王帆, 潘宋斌. 人参皂苷Rg1对阿尔茨海默症大鼠BDNF⁃TrkB信号通路的影响[J]. 生物技术进展, 2022, 12(3): 446-451. |
[5] | 黄乔木, 何艳. 雷帕霉素对糖尿病肾病大鼠足细胞生物学行为及mTOR信号通路的影响[J]. 生物技术进展, 2022, 12(3): 460-466. |
[6] | 李坤, 金丽华. 果蝇造血器官淋巴腺的研究进展[J]. 生物技术进展, 2022, 12(2): 222-228. |
[7] | 李征, 郑亚民, 张小农. 镁离子与肿瘤的相关关系[J]. 生物技术进展, 2022, 12(1): 63-67. |
[8] | 任真,赵金凤,张瑶,谢益敏,周阳,顾杰,施海峰. 钙离子在镉诱导的肾毒性中的作用机理[J]. 生物技术进展, 2019, 9(5): 476-482. |
[9] | 张旭娟,赵鹏翔,YAO Mawulikplimi Adzavon,李秦剑,谢飞. EBV与TLRs信号通路相互作用机制研究进展[J]. 生物技术进展, 2019, 9(3): 231-239. |
[10] | YAO Mawulikplimi Adzavon,赵鹏翔,张旭娟,王丽敏,马雪梅. 巨噬细胞迁移抑制因子分子机制研究进展[J]. 生物技术进展, 2018, 8(5): 389-396. |
[11] | 张亚婷,靳小艳,钟国徽,厉建伟,李英贤,马雪梅. BAG-1蛋白及其对神经系统疾病调控研究进展[J]. 生物技术进展, 2018, 8(3): 229-236. |
[12] | 任思蕊,王冰蕊,郭青,冯甜甜,王鼎,高洁,石莉红. 敲除LSD1基因对人慢性髓系白血病K562细胞周期的影响[J]. 生物技术进展, 2018, 8(3): 269-273. |
[13] | 熊咏民,杨晓莉,张荣强,李宝荣,陈静宏,代晓霞,陈群,谭武红,张峰. 硒在地方病中的防治作用及其分子机制研究进展[J]. 生物技术进展, 2017, 7(5): 501-505. |
[14] | 胡尼其古丽·阿巴克,阿依努尔·玉苏普,玛依努尔·达吾提,其曼古丽·吐尔洪,依米提·热合曼. 蜂胶中黄酮类化合物药理作用研究进展[J]. 生物技术进展, 2017, 7(1): 13-19. |
[15] | 高丽,谌颜,扈廷茂,李光鹏. 肌肉生长抑制素基因在哺乳动物中的最新研究进展[J]. 生物技术进展, 2014, 4(6): 381-388. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 745
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 401
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 2021《生物技术进展》编辑部