生物技术进展 ›› 2022, Vol. 12 ›› Issue (2): 222-228.DOI: 10.19586/j.2095-2341.2021.0135
收稿日期:
2021-07-15
接受日期:
2021-11-08
出版日期:
2022-03-25
发布日期:
2022-03-25
通讯作者:
金丽华
作者简介:
李坤 E-mail:1062832672@qq.com;
基金资助:
Received:
2021-07-15
Accepted:
2021-11-08
Online:
2022-03-25
Published:
2022-03-25
Contact:
Lihua JIN
摘要:
黑腹果蝇(Drosophila melanogaster)是生物学研究中重要的模式生物之一。果蝇造血过程主要发生于胚胎和幼虫阶段,淋巴腺作为幼虫阶段的主要造血器官,由髓质区(medullary zone,MZ)、皮质区(cortical zone,CZ)及后端信号中心区(posterior signal center,PSC)组成。淋巴腺在多种信号通路的调控下,能够维持血细胞的增殖和分化相对稳态,这对于果蝇的造血活动和正常生存均具有重要作用。综述了造血器官淋巴腺的形成过程及维持淋巴腺稳态的信号调节通路,以期为淋巴腺血细胞的详细分类和相应的功能研究奠定理论基础。
中图分类号:
李坤, 金丽华. 果蝇造血器官淋巴腺的研究进展[J]. 生物技术进展, 2022, 12(2): 222-228.
Kun LI, Lihua JIN. Research Progress of Hematopoietic Lymph Gland in Drosophila[J]. Current Biotechnology, 2022, 12(2): 222-228.
1 | HOLZ A, BOSSINGER B, STRASSER T, et al.. The two origins of hemocytes in Drosophila [J]. Development, 2003, 130(20): 4955-4962. |
2 | GHOSH S, SINGH A, MANDAL S, et al.. Active hematopoietic hubs in Drosophila adults generate hemocytes and contribute to immune response [J]. Dev. Cell, 2015, 33(4): 478-88. |
3 | SANCHEZ B P, MAKHIJANI K, HERBOSO L, et al.. Adult Drosophila lack hematopoiesis but rely on a blood cell reservoir at the respiratory epithelia to relay infection signals to surrounding tissues [J]. Dev. Cell, 2019, 51(6): 787-803. |
4 | LI T K, CHONG G S, SVETLANA M. Genetic screen for regulators of lymph gland homeostasis and hemocyte maturation in Drosophila [J]. G3 (Bethesda), 2012, 2(3): 393-405. |
5 | YU S, LUO F, JIN L H. The Drosophila lymph gland is an ideal model for studying hematopoiesis [J]. Dev. Comp. Immunol., 2018, 83: 60-69. |
6 | HARTENSTEIN V. Blood cells and blood cell development in the animal kingdom [J]. Annu. Rev. Cell Dev. Biol., 2006, 22: 677-712. |
7 | EVANS C J, HARTENSTEIN V, BANERJEE U. Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis [J]. Dev. Cell, 2003, 5: 673-690. |
8 | KOCKS C, CHO J H, NEHME N, et al.. Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila [J]. Cell, 2005,123: 335-346. |
9 | SHANDALA T, WOODCOCK J M, NG Y, et al.. Drosophila 14-3-3ε has a crucial role in anti-microbial peptide secretion and innate immunity [J]. Cell Sci., 2011, 124: 2165-2174. |
10 | EVANS C J, LIU T, BANERJEE U. Drosophila hematopoiesis: markers and methods for molecular genetic analysis [J]. Methods, 2014, 68: 242-251. |
11 | LANOT R, ZACHARY D, HOLDER F, et al.. Postembryonic hematopoiesis in Drosophila [J]. Dev. Biol., 2001, 230: 243-257. |
12 | RAMET M, LANOT R, ZACHARY D, et al.. JNK pathway is required for effificient wound healing in Drosophila [J]. Dev. Biol., 2002, 241: 145-156. |
13 | SÖDERHÄL K, CERENIUS L. Role of the prophenoloxidase-activating system in invertebrate immunity [J]. Curr. Opin. Immunol., 1998, 10: 23-28. |
14 | TERRIENTE-FELIX A, LI J, COLLINS S, et al.. Notch cooperates with Lozenge/Runx to lock haemocytes into a differentiation programme [J]. Development, 2013, 140(4): 926-937. |
15 | BENMIMOUN B, POLESELLO C, WALTZER L, et al.. Dual role for insulin/TOR signaling in the control of hematopoietic progenitor maintenance in Drosophila [J]. Development, 2012, 139(10): 1713-1717. |
16 | SHRESTHA R, GATEFF E. Ultrastructure and cytochemistry of the cell types in the larval hematopoietic organs and hemolymph of Drosophila melanogaster [J]. Dev. Growth Differ., 1982, 24: 65-82. |
17 | DUDZIC J P, KONDO S, UEDA R, et al.. Drosophila innate immunity: regional and functional specialization of prophenoloxidases [J/OL]. BMC Biol., 2015, 13: 81 [2022-02-15]. . |
18 | LOURADOUR I, SHARMA A, MORIN-POULARD I, et al.. Reactive oxygen species-dependent Toll/NF-κB activation in the Drosophila hematopoietic niche confers resistance to wasp parasitism [J/OL]. Elife, 2017, 6: e25496[2022-02-15]. . |
19 | TOKUSUMI T, TOKUSUMI Y, BRAHIER M S, et al.. Screening and analysis of Janelia flylight project enhancer-gal4 strains identifies multiple gene enhancers active during hematopoiesis in normal and wasp-challenged Drosophila larvae [J]. G3 (Bethesda), 2017, 7(2): 437-448. |
20 | ANDERL I, VESALA L, IHALAINEN T O, et al.. Transdifferentiation and proliferation in two distinct hemocyte lineages in Drosophila melanogaster larvae after wasp infection [J/OL]. PLoS Pathog., 2016, 12(7): e1005746[2022-02-15]. . |
21 | RUGENDORFF A, YOUNOSSI-HARTENSTEIN A, HARTENST-EIN V. Embryonic origin and differentiation of the Drosophila heart[J]. Rouxs Arch. Dev. Biol., 1994, 203: 266-280. |
22 | MANDAL L, BANERJEE U, HARTENSTEIN V. Evidence for a fruit fly hemangioblast and similarities between lymph-gland hematopoiesis in fruit fly and mammal aorta-gonadal-mesonephros mesoderm [J]. Nat. Genet., 2004, 36(9): 1019-1023. |
23 | MANDAL L, MARTINEZ-AGOSTO J A, EVANS C J, et al.. A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors [J]. Nature, 2007, 446(7133): 320-324. |
24 | KRZEMIEN J, OYALLON J, CROZATIER M, et al.. Hematopoietic progenitors and hemocyte lineages in the Drosophila lymph gland [J]. Dev. Biol., 2010, 346: 310-319. |
25 | JUNG S H, EVANS C J, UEMURA C, et al.. The Drosophila lymph gland as a developmental model of hematopoiesis [J]. Development, 2005, 132(11): 2521-2533. |
26 | GRIGORIAN M, MANDAL L, HARTENSTEIN V. Hematopoiesis at the onset of metamorphosis: terminal differentiation and dissociation of the Drosophila lymph gland [J]. Dev. Genes Evol., 2011, 221(3): 121-131. |
27 | MINAKHINA S, STEWARD R. Hematopoietic stem cells in Drosophila [J]. Development, 2010, 137: 27-31. |
28 | HARTENSTEIN V. Blood cells and blood cell development in the animal kingdom [J]. Annu. Rev. Cell Dev. Biol., 2006, 22: 677-712. |
29 | IRVING P, UBEDA J M, DOUCET D, et al.. New insights into Drosophila larval haemocyte functions through genome-wide analysis [J]. Cell Microbiol., 2005, 7(3): 335-350. |
30 | YU S, LUO F, JIN L H. The Drosophila lymph gland is an ideal model for studying hematopoiesis [J]. Dev. Comp. Immunol., 2018, 83: 60-69. |
31 | ZHANG C U, CADIGAN K M. The matrix protein Tiggrin regulates plasmatocyte maturation in Drosophila larva [J]. Development, 2017, 144(13): 2415-2427. |
32 | KRZEMIEŃ J, DUBOIS L, MAKKI R, et al.. Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre [J]. Nature, 2007, 446(7133): 325-328. |
33 | BENMIMOUN B, POLESELLO C, HAENLIN M, et al.. The EBF transcription factor Collier directly promotes Drosophila blood cell progenitor maintenance independently of the niche [J]. Proc. Natl. Acad. Sci. USA, 2015, 112(29): 9052-9057. |
34 | ESPINOZA I, POCHAMPALLY R, XING F, et al.. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition [J]. Onco. Targets Ther., 2013, 6: 1249-1259. |
35 | KOPAN R, ILAGAN M. The canonical Notch signaling pathway: unfolding the activation mechanism [J]. Cell, 2009, 137(2): 216-233. |
36 | CHO B, YOON S H, LEE D, et al.. Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila [J/OL]. Nat. Commun., 2020, 11(1): 4483[2022-02-15]. . |
37 | CROZATIER M, UBEDA J M, VINCENT A, et al.. Cellular immune response to parasitization in Drosophila requires the EBF orthologue collier [J/OL]. PLoS Biol., 2004, 2(8): E196[2022-02-15]. . |
38 | SMALL C, RAMROOP J, OTAZO M, et al.. An unexpected link between notch signaling and ROS in restricting the difffferentiation of hematopoietic progenitors in Drosophila [J]. Genetics, 2014, 197: 471-483. |
39 | BLANCO-OBREGON D, KATZ M J, DURRIEU L, et al.. Context-specific functions of Notch in Drosophila blood cell progenitors [J]. Dev. Biol., 2020, 462(1): 101-115. |
40 | LEBESTKY T, CHANG T, HARTENSTEIN V, et al.. Specification of Drosophila hematopoietic lineage by conserved transcription factors [J]. Science, 2000, 288(5463): 146-149. |
41 | TERRIENTE-FELIX A, LI J, COLLINS S, et al.. Notch cooperates with Lozenge/Runx to lock haemocytes into a differentiation programme [J]. Development, 2013, 140(4) :926-937. |
42 | WALTZER L, BATAILLÉ L, PEYREFITTE S, et al.. Two isoforms of Serpent containing either one or two GATA zinc fingers have different roles in Drosophila haematopoiesis [J]. EMBO J., 2002, 21(20): 5477-5486. |
43 | WALTZER L, FERJOUX G, BATAILLÉ L, et al.. Cooperation between the GATA and RUNX factors serpent and lozenge during Drosophila hematopoiesis [J]. EMBO J., 2003, 22(24): 6516-6525. |
44 | DEY N S, RAMESH P, CHUGH M, et al. Correction: Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila [J/OL]. Elife, 2019, 8: e51742[2022-02-15]. . |
45 | FERGUSON G B, MARTINEZ-AGOSTO J A. The TEAD family transcription factor Scalloped regulates blood progenitor maintenance and proliferation in Drosophila through PDGF/VEGFR receptor (Pvr) signaling [J]. Dev. Biol., 2017, 425(1): 21-32. |
46 | MAKKI R, MEISTER M, PENNETIER D, et al.. A short receptor downregulates JAK/STAT signalling to control the Drosophila cellular immune response [J/OL]. PLoS Biol., 2010, 8(8): e1000441[2022-02-15]. . |
47 | GAO H, WU X, FOSSETT N. Drosophila E-cadherin functions in hematopoietic progenitors to maintain multipotency and block differentiation [J/OL]. PLoS ONE, 2013, 8(9): e74684[2022-02-15]. . |
48 | GAO H, WU X, FOSSETT N. Upregulation of the Drosophila Friend of GATA gene U-shaped by JAK/STAT signaling maintains lymph gland prohemocyte potency [J]. Mol. Cell Biol., 2009, 29(22): 6086-6096. |
49 | KULKARNI V, KHADILKAR R J, MAGADI S S, et al.. Asrij maintains the stem cell niche and controls differentiation during Drosophila lymph gland hematopoiesis [J/OL]. PLoS ONE, 2011, 6(11): e27667[2022-02-15]. . |
50 | PHILLIPS R L, ERNST R E, BRUNK B, et al.. The genetic program of hematopoietic stem cells [J]. Science, 2000, 288(5471): 1635-1640. |
51 | SINHA A, KHADILKAR R J, VINAY K S, et al.. Conserved regulation of the Jak/STAT pathway by the endosomal protein asrij maintains stem cell potency [J]. Cell Rep., 2013, 4(4):649-658. |
52 | MONDAL B C, MUKHERJEE T, MANDAL L, et al.. Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance [J]. Cell, 2011, 147(7): 1589-600. |
53 | MINAKHINA S, TAN W, STEWARD R. JAK/STAT and the GATA factor Pannier control hemocyte maturation and difffferentiation in Drosophila [J]. Dev. Biol., 2011, 352: 308-316. |
54 | FERGUSON G B, MARTINEZ-AGOSTO J A. The TEAD family transcription factor Scalloped regulates blood progenitor maintenance and proliferation in Drosophila through PDGF/VEGFR receptor (Pvr) signaling [J]. Dev. Biol., 2017, 425: 21-32. |
55 | LAN W, LIU S, ZHAO L, et al.. Regulation of Drosophila hematopoiesis in lymph gland: from a developmental signaling point of view [J/OL]. Int. J. Mol. Sci., 2020, 21(15): 5246[2022-02-15]. . |
56 | ZHAO L, WANG L, CHI C, et al.. The emerging roles of phosphatases in Hedgehog pathway [J/OL]. Cell Commun. Signal, 2017, 15: 35[2022-02-15].. |
57 | BALDEOSINGH R, GAO H, WU X, et al.. Hedgehog signaling from the posterior signaling center maintains U-shaped expression and a prohemocyte population in Drosophila [J]. Dev. Biol., 2018, 441(1): 132-145. |
58 | GIORDANI G, BARRACO M, GIANGRANDE A, et al.. The human Smoothened inhibitor PF-04449913 induces exit from quiescence and loss of multipotent Drosophila hematopoietic progenitor cells [J]. Oncotarget, 2016, 7(34): 55313-55327. |
59 | TOKUSUMI T, TOKUSUMI Y, SCHULZ R A. The miR-7 and bag of marbles genes regulate Hedgehog pathway signaling in blood cell progenitors in Drosophila larval lymph glands [J/OL]. Genesis, 2018, 56: e23210[2022-02-15].. |
60 | SINENKO S A, MANDAL L, MARTINEZ-AGOSTO J A, et al.. Dual role of wingless signaling in stem-like hematopoietic precursor maintenance in Drosophila [J]. Dev. Cell, 2009, 16: 756-763. |
61 | SHIM J, MUKHERJEE T, MONDAL B C, et al.. Olfactory control of blood progenitor maintenance [J]. Cell, 2013, 155(5): 1141-1153. |
62 | DRAGOJLOVIC-MUNTHER M, MARTINEZ-AGOSTO J A. Extracellular matrix-modulated Heartless signaling in Drosophila blood progenitors regulates their differentiation via a Ras/ETS/FOG pathway and target of rapamycin function [J]. Dev. Biol., 2013, 384(2): 313-330. |
63 | PENNETIER D, OYALLON J, MORIN-POULARD I, et al.. Size control of the Drosophila hematopoietic niche by bone morphogenetic protein signaling reveals parallels with mammals [J]. Proc. Natl. Acad. Sci. USA, 2012, 109: 3389-3394. |
64 | DESTALMINIL-LETOURNEAU M, MORIN-POULARD I, TIAN Y, et al.. The vascular niche controls Drosophila hematopoiesis via fibroblast growth factor signaling [J/OL]. Elife, 2021, 10: e64672[2022-02-15].. |
65 | 张明英,袁佳佳,张晓茹,等.不同转染方法包装慢病毒感染人白血病细胞的比较研究[J].生物技术进展,2019,9(3):262-270. |
66 | 许杰,王可飞,魏晓晶,等.基于生物信息学分析SCHIP1在急性髓系白血病中的表达及其临床意义[J].生物技术进展,2020,10(4):417-425. |
[1] | 董立强, 王斌, 苏适, 刘东琦. 雷公藤红素抗肿瘤作用及机制研究进展[J]. 生物技术进展, 2023, 13(1): 77-82. |
[2] | 徐奔, 覃锐, 向航, 许京淑, 廖子龙, 向金平. 臭椿酮抑制急性骨髓性白血病细胞恶性生物学行为的研究[J]. 生物技术进展, 2022, 12(5): 769-777. |
[3] | 赵佩, 邹青, 李泽霖. 黄芪甲甙对急性心肌梗死大鼠心室重构和NOX/ROS/TNF⁃α信号通路的影响[J]. 生物技术进展, 2022, 12(5): 778-785. |
[4] | 陈晓光, 潘晓峰, 王帆, 潘宋斌. 人参皂苷Rg1对阿尔茨海默症大鼠BDNF⁃TrkB信号通路的影响[J]. 生物技术进展, 2022, 12(3): 446-451. |
[5] | 黄乔木, 何艳. 雷帕霉素对糖尿病肾病大鼠足细胞生物学行为及mTOR信号通路的影响[J]. 生物技术进展, 2022, 12(3): 460-466. |
[6] | 张旭娟,赵鹏翔,YAO Mawulikplimi Adzavon,李秦剑,谢飞. EBV与TLRs信号通路相互作用机制研究进展[J]. 生物技术进展, 2019, 9(3): 231-239. |
[7] | YAO Mawulikplimi Adzavon,赵鹏翔,张旭娟,王丽敏,马雪梅. 巨噬细胞迁移抑制因子分子机制研究进展[J]. 生物技术进展, 2018, 8(5): 389-396. |
[8] | 高丽,谌颜,扈廷茂,李光鹏. 肌肉生长抑制素基因在哺乳动物中的最新研究进展[J]. 生物技术进展, 2014, 4(6): 381-388. |
[9] | 齐希梁,程红梅. eds1、atr/nrc1、ahl19三个抗病相关的防卫基因的研究进展[J]. 生物技术进展, 2013, 3(4): 238-22. |
[10] | 赵宏,刘昱辉. 人表皮细胞生长因子及其研究进展[J]. 生物技术进展, 2011, 1(2): 122-129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部