生物技术进展 ›› 2022, Vol. 12 ›› Issue (4): 559-567.DOI: 10.19586/j.2095-2341.2022.0010
收稿日期:
2022-01-27
接受日期:
2022-04-20
出版日期:
2022-07-25
发布日期:
2022-08-10
通讯作者:
牧仁
作者简介:
陈小巧 E-mail:cxq1019@qq.com;
基金资助:
Xiaoqiao CHEN(), Ren MU(
), Yuling LI
Received:
2022-01-27
Accepted:
2022-04-20
Online:
2022-07-25
Published:
2022-08-10
Contact:
Ren MU
摘要:
脐带是由胚胎外中胚层和/或胚胎中胚层发育而来的组织,脐带间充质干细胞是具有自我更新、多向分化以及高度增殖潜能的多功能干细胞。研究证明,脐带间充质干细胞具有以下功能:参与炎症反应,抑制炎症因子分泌并促进免疫调节;参与受损伤组织的治疗与修复使其再生并改善特定疾病症状;抑制肿瘤增殖和迁移以及促进其凋亡等。然而目前尚未明确以上功能是间充质干细胞本身发挥作用,还是其分泌的相关因子对机体修复产生作用。主要对脐带间充质干细胞的定义、来源、生物学特性、分泌功能等方面的研究进展进行了综述,旨在更好地利用间充质干细胞修复组织,以期为脐带间充质干细胞的后续研究提供参考依据。
中图分类号:
陈小巧, 牧仁, 李玉玲. 脐带间充质干细胞的生物学特性及旁分泌作用的研究进展[J]. 生物技术进展, 2022, 12(4): 559-567.
Xiaoqiao CHEN, Ren MU, Yuling LI. Research Progress on the Biological Characteristics and Paracrine Effects of Umbilical Cord Mesenchymal Stem Cells[J]. Current Biotechnology, 2022, 12(4): 559-567.
来源 | 表面标志物 | |
---|---|---|
阳性 | 阴性 | |
骨髓[ | CD29、CD44、CD71、CD73、CD90、CD105(SH2)、CD106、CD120a、CD124、CD166(SH3) | CD14、CD34、CD45、HLA-DR |
脐带血 [ | CD29、CD44、CD73、CD105、CD106、HLAⅠ | CD14、CD34、CD45、CD133、HLAⅡ |
华通氏胶[ | CD13、CD29、CD44、CD73、CD90、CD105、CD117(C-kit)、HLAⅠ、OCT4、Sox2、Nanog和Nucleostemin | CD31、CD34、CD45、HLAⅡ、CD14 |
脐血管[ | CD13、CD29、CD73、CD90、CD105、OCT-4、SSEA-4、Nanog、ZFX、Bmi-1、Nucleostemin | CD34、CD45、HLA-DR、SSEA-3、TRA-1-60、TRA-1-81 |
脐带内膜[ | CD44、CD73、CD105、CD106、CD166、STRO-1、SSEA-4、HLA-ABC | CD19、CD34、CD45、CD117、CD133、HLA-DR |
脐带血管周围[ | CD44、CD73(SH3)、CD90(Thy-1)、CD105(SH2)、CD117(C-kit)、MHC I | CD34、CD45、CD235a、CD106、CD123、SSEA-4、HLA-DR、HLA-DP、HLA-DQ(MHCⅡ)、HLA-G、OCT-4 |
表1 不同来源的MSCs表面标志物
Table 1 Surface markers of MSCs from different sources
来源 | 表面标志物 | |
---|---|---|
阳性 | 阴性 | |
骨髓[ | CD29、CD44、CD71、CD73、CD90、CD105(SH2)、CD106、CD120a、CD124、CD166(SH3) | CD14、CD34、CD45、HLA-DR |
脐带血 [ | CD29、CD44、CD73、CD105、CD106、HLAⅠ | CD14、CD34、CD45、CD133、HLAⅡ |
华通氏胶[ | CD13、CD29、CD44、CD73、CD90、CD105、CD117(C-kit)、HLAⅠ、OCT4、Sox2、Nanog和Nucleostemin | CD31、CD34、CD45、HLAⅡ、CD14 |
脐血管[ | CD13、CD29、CD73、CD90、CD105、OCT-4、SSEA-4、Nanog、ZFX、Bmi-1、Nucleostemin | CD34、CD45、HLA-DR、SSEA-3、TRA-1-60、TRA-1-81 |
脐带内膜[ | CD44、CD73、CD105、CD106、CD166、STRO-1、SSEA-4、HLA-ABC | CD19、CD34、CD45、CD117、CD133、HLA-DR |
脐带血管周围[ | CD44、CD73(SH3)、CD90(Thy-1)、CD105(SH2)、CD117(C-kit)、MHC I | CD34、CD45、CD235a、CD106、CD123、SSEA-4、HLA-DR、HLA-DP、HLA-DQ(MHCⅡ)、HLA-G、OCT-4 |
图3 间充质干细胞通过与树突状细胞和T调节细胞的相互作用提供免疫调节作用[38]注:IL—白介素;IDO—吲哚胺2,3-双加氧酶;VEGF—血管内皮生长因子;PGE2—甲基前列腺素E2;TGFβ—转化生长因子β;CCL-5—趋化因子配体5;DC—树突状细胞。
Fig. 3 Mesenchymal stem cells (MSCs) provide an immunoregulatory effect by interactions of dendritic cells and T regulatory cells[38]
1 | 沈霞芬.家畜组织学与胚胎学[M].北京:中国农业出版社,2009, 40-47. |
2 | 兰萨,阿塔拉.干细胞生物学基础[M].北京:化学工业出版社, 2020,156-161. |
3 | SU W, WANG C, FU H, et al.. Human umbilical cord mesenchymal stem cells extricate bupivacaine-impaired skeletal muscle function via mitigating neutrophil-mediated acute inflammation and protecting against fibrosis[J/OL]. Int. J. Mol. Sci., 2019, 20(17): 4312[2022-05-27]. . |
4 | WANG G, JOEL M D M, YUAN J, et al.. Human umbilical cord mesenchymal stem cells alleviate inflammatory bowel disease by inhibiting ERK phosphorylation in neutrophils[J]. Inflammopharmacology, 2020, 28(2): 603-616. |
5 | AHMADVAND K S, ABSALAN A, AZADI D. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles attenuate experimental autoimmune encephalomyelitis via regulating pro and anti-inflammatory cytokines[J/OL]. Sci. Rep., 2021, 11(1): 11658[2022-05-27]. . |
6 | RIDZUAN N, ZAKARIA N, WIDERA D, et al.. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles ameliorate airway inflammation in a rat model of chronic obstructive pulmonary disease (COPD)[J/OL]. Stem Cell Res. Ther., 2021, 12(1): 54[2022-05-27]. . |
7 | SOBOLEWSKI K, BAŃKOWSKI E, CHYCZEWSKI L. Collagen and glycosaminoglycans of wharton's jelly[J]. Neonatology, 1997, 71: 11-21. |
8 | MENNAN C, WRIGHT K, BHATTACHARJEE A, et al.. Isolation and characterisation of mesenchymal stem cells from different regions of the human umbilical cord[J]. BioMed. Res. Int., 2013, 2013: 916136-916138. |
9 | DING D C, CHANG Y H, SHYU W C, et al.. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy[J]. Cell Transplant, 2015, 24(3): 339-347. |
10 | MCELREAVEY K D, IRVINE A I, ENNIS K T, et al.. Isolation, culture and characterisation of fibroblast-like cells derived from the Wharton's jelly portion of human umbilical cord[J/OL]. Biochem. Soc. Trans., 1991, 19(1): 29S[2022-05-10]. . |
11 | ROMANOV Y A, SVINTSITSKAYA V A, SMIRNOV V N. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC‐like cells from umbilical cord[J]. Stem Cells (Dayton, Ohio), 2003, 21(1): 105-110. |
12 | PU L, MENG M, WU J, et al.. Compared to the amniotic membrane, Wharton's jelly may be a more suitable source of mesenchymal stem cells for cardiovascular tissue engineering and clinical regeneration[J/OL]. Stem Cell Res. Ther., 2017, 8(1): 72[2022-05-10]. . |
13 | YOON J H, ROH E Y, SHIN S, et al.. Comparison of explant-derived and enzymatic digestion-derived MSCs and the growth factors from Wharton's jelly[J/OL]. BioMed. Res. Int., 2013, 2013: 428726[2022-05-10]. . |
14 | SALEHINEJAD P, ALITHEEN N B, ALI A M, et al.. Comparison of different methods for the isolation of mesenchymal stem cells from human umbilical cord Wharton's jelly[J]. In Vitro Cell Dev. Biol. Anim., 2012, 48(2): 75-83. |
15 | KERMANI A J, FATHI F, MOWLA S J. Characterization and genetic manipulation of human umbilical cord vein mesenchymal stem cells: potential application in cell-based gene therapy[J]. Rejuvenation Res., 2008, 11(2): 379-386. |
16 | CHRISTODOULOU I, KOLISIS F N, PAPAEVANGELIOU D, et al.. Comparative evaluation of human mesenchymal stem cells of fetal (Wharton's Jelly) and adult (adipose tissue) origin during prolonged in vitro expansion: considerations for cytotherapy[J/OL]. Stem Cells Int., 2013, 2013: 246134[2022-05-10]. . |
17 | GONZALEZ R, GRIPARIC L, UMANA M, et al.. An efficient approach to isolation and characterization of pre- and postnatal umbilical cord lining stem cells for clinical applications[J]. Cell Transplant., 2010, 19(11): 1439-1449. |
18 | 杨嫣君,余飞,丁利军,等.人脐带动脉旁、静脉旁与华通氏胶间充质干细胞的血管生成能力比较及移植安全性评价[J].中国比较医学杂志,2020,30(2):43-53. |
19 | MABUCHI Y, OKAWARA C, MÉNDEZ-FERRER S, et al.. Cellular heterogeneity of mesenchymal stem/stromal cells in the bone marrow[J/OL]. Front Cell Dev. Biol., 2021, 9: 689366[2022-05-10]. . |
20 | MAMIDI M K, NATHAN K G, SINGH G, et al.. Comparative cellular and molecular analyses of pooled bone marrow multipotent mesenchymal stromal cells during continuous passaging and after successive cryopreservation[J]. J. Cell. Biochem., 2012, 113(10): 3153-3164. |
21 | BIEBACK K, KERN S, KLÜTER H, et al.. Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood[J]. Stem Cells (Dayton, Ohio), 2004, 22(4): 625-634. |
22 | SARUGASER R, LICKORISH D, BAKSH D, et al.. Human umbilical cord perivascular (hucpv) cells: a source of mesenchymal progenitors[J]. Stem Cells (Dayton, Ohio), 2005, 23(2): 220-229. |
23 | CHOI H J, JIN S D, RENGARAJ D, et al.. Differential transcriptional regulation of the NANOG gene in chicken primordial germ cells and embryonic stem cells[J/OL]. J. Anim. Sci. Biotechnol., 2021, 12(1): 40[2022-05-10]. . |
24 | YANG Z X, HAN Z B, JI Y R, et al.. CD106 identifies a subpopulation of mesenchymal stem cells with unique immunomodulatory properties[J/OL]. PLoS ONE, 2013, 8(3): e59354[2022-05-10]. . |
25 | 王刚,李东升,管玉涛,等.两种不同来源间充质干细胞的生物学特性比较[J].中国组织工程研究,2018,22(17):2705-2710. |
26 | 黄平,张坤,李芳,等.脐带和脂肪源性间充质干细胞生物学特性比较[J].山东大学学报(医学版),2018,56(3): 72-78. |
27 | GUAN Y T, XIE Y, LI D S, et al.. Comparison of biological characteristics of mesenchymal stem cells derived from the human umbilical cord and decidua parietalis[J]. Mol. Med. Rep., 2019, 20(1): 633-639. |
28 | OBRADOVIC H, KRSTIC J, TRIVANOVIC D, et al.. Improving stemness and functional features of mesenchymal stem cells from Wharton's jelly of a human umbilical cord by mimicking the native, low oxygen stem cell niche[J]. Placenta (Eastbourne), 2019, 82: 25-34. |
29 | JOTHIMANI G, DI LIDDO R, PATHAK S, et al.. Wnt signaling regulates the proliferation potential and lineage commitment of human umbilical cord derived mesenchymal stem cells[J]. Mol. Biol. Rep., 2020, 47(2): 1293-1308. |
30 | 孔吟皓,徐龙飞,王琪,等.神经元素3过表达对诱导人脐带间充质干细胞向胰岛素分泌细胞分化的影响[J].解剖学报,2021,52(3):398-404. |
31 | 徐雄峰,邱波,李华杰,等.壳聚糖薄膜培养对脐带间充质干细胞抗炎基因表达的影响[J].生物技术进展,2019,9(4):404-408. |
32 | 何万里,李永海,杨军政,等.缬沙坦诱导人脐带间充质干细胞向心肌样细胞分化[J].解剖学报,2014,45(6):841-846. |
33 | BUUL G M, SIEBELT M, LEIJS M J C, et al.. Mesenchymal stem cells reduce pain but not degenerative changes in a mono‐iodoacetate rat model of osteoarthritis[J]. J. Orthop. Res., 2014, 32(9): 1167-1174. |
34 | YANG X, ZHANG S, HUANG D, et al.. Treatment of refractory secondary hemophagocytic lymphohistiocytosis with umbilical cord mesenchymal stem cells[J]. J. Int. Med. Res., 2019, 47(5): 2135-2144. |
35 | GUO G, ZHUANG X, XU Q, et al.. Peripheral infusion of human umbilical cord mesenchymal stem cells rescues acute liver failure lethality in monkeys[J/OL]. Stem Cell Res. Ther., 2019, 10(1): 84[2022-05-10]. . |
36 | DE WITTE S F H, LUK F, SIERRA PARRAGA J M. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells[J]. Stem Cells, 2018, 2018,36(4):602-615. |
37 | KIM H W, LEE H, KANG J M, et al.. Dual effects of human placenta-derived neural cells on neuroprotection and the inhibition of neuroinflammation in a rodent model of Parkinson's disease[J]. Cell Transplan., 2018, 27(5): 814-830. |
38 | KYURKCHIEV D, BOCHEV I, IVANOVA-TODOROVA E, et al.. Secretion of immunoregulatory cytokines by mesenchymal stem cells[J]. World J. Stem Cells, 2014, 6(5): 552-570. |
39 | 刘峰,徐永胜,俞海燕,等.人脐带间充质干细胞作为维持人胚胎干细胞生长饲养层细胞的研究[J].中国实验动物学报,2011,19(4):271-276. |
40 | NAM S M, MAENG Y S, KIM E K, et al.. Ex vivo expansion of human limbal epithelial cells using human placenta-derived and umbilical cord-derived mesenchymal stem cells[J]. Stem Cells Int., 2017, 2017: 4206187. |
41 | BAKHSHI T, ZABRISKIE R C, BODIE S, et al.. Mesenchymal stem cells from the Wharton's jelly of umbilical cord segments provide stromal support for the maintenance of cord blood hematopoietic stem cells during long-term ex vivo culture[J]. Transfusion, 2008, 48(12): 2638-2644. |
42 | PEREIRA T, IVANOVA G, CASEIRO A R, et al.. MSCs conditioned media and umbilical cord blood plasma metabolomics and composition[J/OL]. PLoS ONE, 2014, 9(11): e113769[2022-05-10]. . |
43 | ZHANG L, LI Y, GUAN C, et al.. Therapeutic effect of human umbilical cord-derived mesenchymal stem cells on injured rat endometrium during its chronic phase[J/OL]. Stem Cell Res. Ther., 2018, 9(1): 36[2022-05-10]. . |
44 | QU Q, PANG Y, ZHANG C, et al.. Exosomes derived from human umbilical cord mesenchymal stem cells inhibit vein graft intimal hyperplasia and accelerate reendothelialization by enhancing endothelial function[J/OL]. Stem Cell Res. Ther., 2020, 11(1): 133[2022-05-10]. . |
45 | ZHANG Y, XIE Y, HAO Z, et al.. Umbilical mesenchymal stem cell-derived exosome-encapsulated hydrogels accelerate bone repair by enhancing angiogenesis[J]. ACS Appl. Mater. Interfaces., 2021, 13(16): 18472-18487. |
46 | SHI R, LIAN W, JIN Y, et al.. Role and effect of vein-transplanted human umbilical cord mesenchymal stem cells in the repair of diabetic foot ulcers in rats[J]. Acta Biochim. Biophys. Sin. (Shanghai), 2020, 52(6): 620-630. |
47 | 王惠,赵鹏翔,张旭娟,等.间充质干细胞在疾病治疗中的应用潜力[J].生物技术进展,2021,11(6):688-693. |
48 | MA Y, HAO X, ZHANG S, et al.. The in vitro and in vivo effects of human umbilical cord mesenchymal stem cells on the growth of breast cancer cells[J]. Breast Cancer Res. Treat., 2012, 133(2): 473-485. |
49 | YUAN Y, ZHOU C, CHEN X, et al.. Suppression of tumor cell proliferation and migration by human umbilical cord mesenchymal stem cells: a possible role for apoptosis and Wnt signaling[J]. Oncol. Lett., 2018, 15(6): 8536-8544. |
50 | HE Z, LI W, ZHENG T, et al.. Human umbilical cord mesenchymal stem cells-derived exosomes deliver microRNA-375 to downregulate ENAH and thus retard esophageal squamous cell carcinoma progression[J/OL]. J. Exp. Clin. Cancer Res., 2020, 39(1): 140[2022-05-10]. . |
51 | PERRY A R, LINCH D C. The history of bone-marrow transplantation[J]. Blood Rev., 1996, 10(4): 215-219. |
52 | 周桂珍,周正娜,唐小云,等.盘羊脐带间充质干细胞的分离培养及诱导分化[J].中国畜牧兽医,2021,48(5):1584-1592. |
[1] | 董立强, 王斌, 苏适, 刘东琦. 雷公藤红素抗肿瘤作用及机制研究进展[J]. 生物技术进展, 2023, 13(1): 77-82. |
[2] | 刘力萍, 王宏华, 王峰, 丁鹏, 孙子豪, 王哲, 乔颖, 侯竹美. 副溶血弧菌CHY5-M1M噬菌体的分离鉴定及生物学特性分析[J]. 生物技术进展, 2022, 12(6): 900-905. |
[3] | 李征, 郑亚民, 张小农. 镁离子与肿瘤的相关关系[J]. 生物技术进展, 2022, 12(1): 63-67. |
[4] | 王惠, 赵鹏翔, 张旭娟, 姚婷婷, 刘梦昱, YAO Mawulikplimi Adzavon, 谢飞. 间充质干细胞在疾病治疗中的应用潜力[J]. 生物技术进展, 2021, 11(6): 688-693. |
[5] | 原旭冰,刘洪涛,杜昱光. 壳寡糖的制备及其在医学和农业生产中的应用[J]. 生物技术进展, 2018, 8(6): 461-468. |
[6] | 陆腾飞,邬杨楠,裴文华,马月辉,关伟军. 内皮祖细胞的生物学特性及其应用[J]. 生物技术进展, 2017, 7(4): 266-271. |
[7] | 胡尼其古丽·阿巴克,阿依努尔·玉苏普,玛依努尔·达吾提,其曼古丽·吐尔洪,依米提·热合曼. 蜂胶中黄酮类化合物药理作用研究进展[J]. 生物技术进展, 2017, 7(1): 13-19. |
[8] | 王维才,张付云,刘晔,卢航,李振,赵宇. 江蓠内生真菌NSS1蛋白活性的初步研究[J]. 生物技术进展, 2014, 4(2): 124-128. |
[9] | 钟葵,佟立涛,刘丽娅,周闲容,钟昕,周素梅. 固体发酵裂褶多糖免疫调节及抗肿瘤活性研究[J]. 生物技术进展, 2013, 3(6): 421-426. |
[10] | 庞俊峰,马德宁,王德寿,李联社,吴燕民. 向日葵列当生物学特性及抗列当向日葵分子育种研究进展[J]. 生物技术进展, 2012, 2(6): 391-396. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部