生物技术进展 ›› 2024, Vol. 14 ›› Issue (1): 102-110.DOI: 10.19586/j.2095-2341.2023.0097
• 进展评述 • 上一篇
收稿日期:
2023-08-04
接受日期:
2023-11-02
出版日期:
2024-01-25
发布日期:
2024-02-05
作者简介:
刘星宇 E-mail: liuxingyu.fshy@sinopec.com
基金资助:
Xingyu LIU(), Guoli ZHAO, Xuejing LI
Received:
2023-08-04
Accepted:
2023-11-02
Online:
2024-01-25
Published:
2024-02-05
摘要:
氢气在能源领域的优势已日渐凸显,其在医学领域同样是一种清洁、高效、经济的治疗手段。氢医学领域主要包括氢气对疾病的基础研究和临床研究,如氢气的使用方法、剂量、对健康的促进作用、对疾病的治疗效果以及作用机理等。氢分子可以清除羟基自由基和过氧亚硝酸盐,对氧化应激和炎症相关疾病具有显著的治疗效果,同时其作为一种内源性气体,无毒无害,对人体不会造成不良反应。通过直接摄入和控制释放等方式,可以实现对脑和神经系统疾病、心血管疾病、糖尿病和癌症等疾病的靶向治疗。介绍了释放氢气的不同方式及其在医学领域的研究进展,并对氢医学的科学和实践问题进行了展望,以期为氢气在生物医学领域的应用研究提供参考。
中图分类号:
刘星宇, 赵国利, 李雪婧. 氢气在医学领域的应用进展[J]. 生物技术进展, 2024, 14(1): 102-110.
Xingyu LIU, Guoli ZHAO, Xuejing LI. Application Progress of Hydrogen in Medical Field[J]. Current Biotechnology, 2024, 14(1): 102-110.
释放氢气方式 | 疾病 | 研究对象 | 参考文献 |
---|---|---|---|
吸入氢气 | 心脏骤停 | 5例心脏骤停后昏迷患者 | [ |
吸入氢气 | 心肌梗死 | 20例ST段提高型心肌梗死患者 | [ |
吸入氢气 | 慢性间歇性缺氧引起的心脏损伤 | 慢性间歇性缺氧大鼠模型 | [ |
吸入氢气 | 脑梗 | 50例患者随机对照临床研究 | [ |
吸入氢气 | 胶质母细胞瘤 | 大鼠原位胶质瘤模型和小鼠皮下异种移植模型 | [ |
吸入氢气 | 晚期癌症(肺癌、胰腺癌、肝癌) | 82例Ⅲ期和Ⅳ期癌症患者 | [ |
饮用富氢水 | 肝癌 | 49例患者随机对照临床研究 | [ |
饮用富氢水 | 帕金森 | 89例患者随机双盲研究 | [ |
饮用富氢水 | 糖尿病 | 9例糖尿病患者 | [ |
饮用富氢水 | 2型糖尿病和糖耐量受损 | 30例2型糖尿病患者和6例糖耐量受损患者 | [ |
注射富氢生理盐水 | 缺血性中风 | 38例急性缺血性卒中住院患者 | [ |
注射富氢生理盐水 | 心肌缺血再灌注损伤 | 心脏骤停大鼠模型 | [ |
涂覆掺氢二氧化钛纳米棒 | 糖尿病足溃疡 | 小鼠糖尿病创面模型 | [ |
静脉注射Fe@CMC纳米颗粒 | 深部肿瘤 | 肿瘤小鼠模型 | [ |
注射氢化钯纳米颗粒 | 阿尔兹海默症 | 三倍转基因阿尔茨海默症小鼠模型 | [ |
注射载氢微气泡 | 心肌缺血再灌注损伤 | 心肌缺血大鼠模型 | [ |
表1 氢疗法的适用病症及研究对象
Table 1 Applicable symptoms and research objects of hydrogen therapy
释放氢气方式 | 疾病 | 研究对象 | 参考文献 |
---|---|---|---|
吸入氢气 | 心脏骤停 | 5例心脏骤停后昏迷患者 | [ |
吸入氢气 | 心肌梗死 | 20例ST段提高型心肌梗死患者 | [ |
吸入氢气 | 慢性间歇性缺氧引起的心脏损伤 | 慢性间歇性缺氧大鼠模型 | [ |
吸入氢气 | 脑梗 | 50例患者随机对照临床研究 | [ |
吸入氢气 | 胶质母细胞瘤 | 大鼠原位胶质瘤模型和小鼠皮下异种移植模型 | [ |
吸入氢气 | 晚期癌症(肺癌、胰腺癌、肝癌) | 82例Ⅲ期和Ⅳ期癌症患者 | [ |
饮用富氢水 | 肝癌 | 49例患者随机对照临床研究 | [ |
饮用富氢水 | 帕金森 | 89例患者随机双盲研究 | [ |
饮用富氢水 | 糖尿病 | 9例糖尿病患者 | [ |
饮用富氢水 | 2型糖尿病和糖耐量受损 | 30例2型糖尿病患者和6例糖耐量受损患者 | [ |
注射富氢生理盐水 | 缺血性中风 | 38例急性缺血性卒中住院患者 | [ |
注射富氢生理盐水 | 心肌缺血再灌注损伤 | 心脏骤停大鼠模型 | [ |
涂覆掺氢二氧化钛纳米棒 | 糖尿病足溃疡 | 小鼠糖尿病创面模型 | [ |
静脉注射Fe@CMC纳米颗粒 | 深部肿瘤 | 肿瘤小鼠模型 | [ |
注射氢化钯纳米颗粒 | 阿尔兹海默症 | 三倍转基因阿尔茨海默症小鼠模型 | [ |
注射载氢微气泡 | 心肌缺血再灌注损伤 | 心肌缺血大鼠模型 | [ |
释放氢气方式 | 疾病 | 研究对象 | 参考文献 |
---|---|---|---|
吸入氢气 | 缺血性脑卒中 | 心脏骤停大鼠模型 | [ |
吸入氢气 | 缺血性脑卒中 | 50例患者随机对照临床研究 | [ |
饮用富氢水 | 帕金森 | 89例患者随机双盲研究 | [ |
饮用富氢水 | 阿尔兹海默症 | 三倍转基因阿尔茨海默症小鼠模型 | [ |
注射富氢溶液 | 缺血性中风 | 38例急性缺血性中风患者 | [ |
注射氢化钯纳米颗粒 | 阿尔兹海默症 | 三倍转基因阿尔茨海默症小鼠模型 | [ |
表2 氢气对脑和神经系统疾病的治疗作用研究
Table 2 Research on the therapeutic effect of hydrogen on brain and nervous system diseases
释放氢气方式 | 疾病 | 研究对象 | 参考文献 |
---|---|---|---|
吸入氢气 | 缺血性脑卒中 | 心脏骤停大鼠模型 | [ |
吸入氢气 | 缺血性脑卒中 | 50例患者随机对照临床研究 | [ |
饮用富氢水 | 帕金森 | 89例患者随机双盲研究 | [ |
饮用富氢水 | 阿尔兹海默症 | 三倍转基因阿尔茨海默症小鼠模型 | [ |
注射富氢溶液 | 缺血性中风 | 38例急性缺血性中风患者 | [ |
注射氢化钯纳米颗粒 | 阿尔兹海默症 | 三倍转基因阿尔茨海默症小鼠模型 | [ |
释放氢气方式 | 疾病 | 研究对象 | 参考文献 |
---|---|---|---|
吸入氢气 | 心脏骤停 | 5例心脏骤停后昏迷患者 | [ |
吸入氢气 | 心肌梗死 | 20例ST段提高型心肌梗死患者 | [ |
吸入氢气 | 心肌梗死 | 急性心肌梗死大鼠模型 | [ |
吸入氢气 | 慢性间歇性缺氧引起的心脏损伤 | 慢性间歇性缺氧大鼠模型 | [ |
注射富氢生理盐水 | 心脏骤停引起的缺血再灌注损伤 | 心脏骤停大鼠模型 | [ |
注射载氢微气泡 | 心肌缺血再灌注损伤 | 心肌缺血大鼠模型 | [ |
表3 氢气对心血管疾病的治疗作用研究
Table 3 Research on the therapeutic effect of hydrogen on cardiovascular diseases
释放氢气方式 | 疾病 | 研究对象 | 参考文献 |
---|---|---|---|
吸入氢气 | 心脏骤停 | 5例心脏骤停后昏迷患者 | [ |
吸入氢气 | 心肌梗死 | 20例ST段提高型心肌梗死患者 | [ |
吸入氢气 | 心肌梗死 | 急性心肌梗死大鼠模型 | [ |
吸入氢气 | 慢性间歇性缺氧引起的心脏损伤 | 慢性间歇性缺氧大鼠模型 | [ |
注射富氢生理盐水 | 心脏骤停引起的缺血再灌注损伤 | 心脏骤停大鼠模型 | [ |
注射载氢微气泡 | 心肌缺血再灌注损伤 | 心肌缺血大鼠模型 | [ |
释放氢气方式 | 疾病 | 研究对象 | 参考文献 |
---|---|---|---|
饮用富氢水 | 糖尿病 | 9例糖尿病患者 | [ |
饮用富氢水 | 2型糖尿病和糖耐量受损 | 30例2型糖尿病患者和6例糖耐量受损患者 | [ |
涂覆C3N4纳米片 | 糖尿病足溃疡 | 糖尿病小鼠模型 | [ |
涂覆掺氢二氧化钛纳米棒 | 糖尿病足溃疡 | 小鼠糖尿病创面模型 | [ |
表4 氢气对糖尿病及其并发症的治疗作用研究
Table 4 Study on the therapeutic effect of hydrogen on diabetes and its complications
释放氢气方式 | 疾病 | 研究对象 | 参考文献 |
---|---|---|---|
饮用富氢水 | 糖尿病 | 9例糖尿病患者 | [ |
饮用富氢水 | 2型糖尿病和糖耐量受损 | 30例2型糖尿病患者和6例糖耐量受损患者 | [ |
涂覆C3N4纳米片 | 糖尿病足溃疡 | 糖尿病小鼠模型 | [ |
涂覆掺氢二氧化钛纳米棒 | 糖尿病足溃疡 | 小鼠糖尿病创面模型 | [ |
释放氢气方式 | 疾病 | 研究对象 | 参考文献 |
---|---|---|---|
吸入氢气 | 晚期癌症(肺癌、胰腺癌、肝癌) | 82例Ⅲ期和Ⅳ期癌症患者 | [ |
静脉注射Fe@CMC纳米颗粒 | 深部肿瘤 | 宫颈癌、乳腺癌、黑色素瘤小鼠模型 | [ |
静脉注射ZnS纳米颗粒 | 深部肿瘤 | 乳腺癌小鼠模型 | [ |
吸入氢气 | 胶质母细胞瘤 | 原位胶质瘤大鼠模型和皮下异种移植小鼠模型 | [ |
吸入氢气 | 卵巢癌 | 卵巢癌小鼠模型 | [ |
饮用富氢水 | 肝癌 | 49例患者随机对照临床研究 | [ |
表5 氢气对癌症的治疗作用研究
Table 5 Research on the therapeutic effect of hydrogen on cancer
释放氢气方式 | 疾病 | 研究对象 | 参考文献 |
---|---|---|---|
吸入氢气 | 晚期癌症(肺癌、胰腺癌、肝癌) | 82例Ⅲ期和Ⅳ期癌症患者 | [ |
静脉注射Fe@CMC纳米颗粒 | 深部肿瘤 | 宫颈癌、乳腺癌、黑色素瘤小鼠模型 | [ |
静脉注射ZnS纳米颗粒 | 深部肿瘤 | 乳腺癌小鼠模型 | [ |
吸入氢气 | 胶质母细胞瘤 | 原位胶质瘤大鼠模型和皮下异种移植小鼠模型 | [ |
吸入氢气 | 卵巢癌 | 卵巢癌小鼠模型 | [ |
饮用富氢水 | 肝癌 | 49例患者随机对照临床研究 | [ |
1 | DOLE M, WILSON F R, FIFE W P. Hyperbaric hydrogen therapy: a possible treatment for cancer[J]. Science, 1975, 190(4210): 152-154. |
2 | OHSAWA I, ISHIKAWA M, TAKAHASHI K, et al.. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals[J]. Nat. Med., 2007, 13(6): 688-694. |
3 | YUAN M, LIANG S, YANG L, et al.. Rational design of platinum-bismuth sulfide schottky heterostructure for sonocatalysis-mediated hydrogen therapy[J/OL]. Adv. Mater., 2023, 35(10): e2209589[2023-01-22]. . |
4 | 杜健,田志刚,林桦,等.氢气吸入对肺癌根治患者术后谵妄的影响[J].生物技术进展,2022,12(4):510-515. |
DU J, TIAN Z G, LIN H, et al.. Effect of hydrogen inhalation on postoperative delirium in patients undergoing radical surgery for lung cancer[J]. Curr. Biotechnol., 2022, 12(4): 510-515. | |
5 | JIANG Z, ALAMURI T T, MUIR E R, et al.. Longitudinal multiparametric MRI study of hydrogen-enriched water with minocycline combination therapy in experimental ischemic stroke in rats[J/OL]. Brain Res., 2020, 1748: 147122 http://doi.org/10.1016/j.brainres.2020.147122. |
6 | GONG X H, FAN X H, YIN X X, et al.. Hydrogen therapy after resuscitation improves myocardial injury involving inhibition of autophagy in an asphyxial rat model of cardiac arrest[J/OL]. Exp. Ther. Med., 2022, 23(6): 376[2022-04-07]. . |
7 | ZHANG L, ZHAO P H, YUE C P, et al.. Sustained release of bioactive hydrogen by Pd hydride nanoparticles overcomes Alzheimer's disease[J]. Biomaterials, 2019, 197: 393-404. |
8 | GONG F, YANG N, XU J, et al.. Calcium hydride-based dressing to promote wound healing[J/OL]. Adv. Healthc. Mater., 2022, 12(2): e2201771[2022-10-14]. . |
9 | ZHANG X L, LIU J M, JIN K K, et al.. Subcutaneous injection of hydrogen gas is a novel effective treatment for type 2 diabetes[J]. J. Diabetes Invest., 2018, 9(1): 83-90. |
10 | WANG S T, BAO C, HE Y, et al.. Hydrogen gas (XEN) inhalation ameliorates airway inflammation in asthma and COPD patients[J]. QJM-Int. J. Med., 2020, 113(12): 870-875. |
11 | ZHENG Z G, SUN W Z, HU J Y, et al.. Hydrogen/oxygen therapy for the treatment of an acute exacerbation of chronic obstructive pulmonary disease: results of a multicenter, randomized, double-blind, parallel-group controlled trial[J/OL]. Respir. Res., 2021, 22(1): 149[2023-11-24]. . |
12 | 陶鸽如,秦树存.氢生物医学效应在疏解自由基氧化应激的分子机制[J].生物技术进展,2022,12(4):490-496. |
TAO G R, QIN S C. Molecular mechanism of hydrogen biomedicine in relieving free radical oxidative stress[J]. Curr. Biotechnol., 2022, 12(4): 490-496. | |
13 | ZHOU P, LIN B, WANG P, et al.. The healing effect of hydrogen-rich water on acute radiation-induced skin injury in rats[J]. J. Radiat. Res., 2019, 60(1): 17-22. |
14 | IKETANI M, OHSHIRO J, URUSHIBARA T, et al.. Preadministration of hydrogen-rich water protects against lipopolysaccharide-induced sepsis and attenuates liver injury[J]. Shock, 2017, 48(1): 85-93. |
15 | DONG A L, YU Y, WANG Y Y, et al.. Protective effects of hydrogen gas against sepsis-induced acute lung injury via regulation of mitochondrial function and dynamics[J]. Int. Immunopharmacol., 2018, 65: 366-372. |
16 | NING K, LIU W W, HUANG J L, et al.. Effects of hydrogen on polarization of macrophages and microglia in a stroke model[J]. Med. Gas Res., 2018, 8(4): 154-159. |
17 | ZHANG N, DENG C, ZHANG X, et al.. Inhalation of hydrogen gas attenuates airway inflammation and oxidative stress in allergic asthmatic mice[J/OL]. Asthma Res. Practice, 2018, 4: 3[2018-03-15]. . |
18 | GAO Y N, YANG H X, FAN Y B, et al.. Hydrogen-rich saline attenuates cardiac and hepatic injury in doxorubicin rat model by inhibiting inflammation and apoptosis[J/OL]. Mediators Inflamm., 2016, 2016: 1320365[2023-11-15]. . |
19 | LI Q, TANAKA Y, MIWA N. Influence of hydrogen-occluding-silica on migration and apoptosis in human esophageal cells in vitro[J]. Med. Gas Res., 2017, 7(2): 76-85. |
20 | TAMURA T, SUZUKI M, HAYASHIDA K, et al.. Hydrogen gas inhalation alleviates oxidative stress in patients with post-cardiac arrest syndrome[J]. J. Clin. Biochem. Nutr., 2020, 67(2): 214-221. |
21 | KATSUMATA Y, SANO F, ABE T, et al.. The effects of hydrogen gas inhalation on adverse left ventricular remodeling after percutaneous coronary intervention for ST-elevated myocardial infarction-first pilot study in humans[J]. Circ. J., 2017, 81(7): 940-947. |
22 | ZHAO Y S, AN J R, YANG S, et al.. Hydrogen and oxygen mixture to improve cardiac dysfunction and myocardial pathological changes induced by intermittent hypoxia in rats[J/OL]. Oxid. Med. Cell. Longev., 2019, 2019: 7415212[2019-03-28]. . |
23 | ONO H, NISHIJIMA Y, OHTA S, et al.. Hydrogen gas inhalation treatment in acute cerebral infarction: a randomized controlled clinical study on safety and neuroprotection[J]. J. Stroke Cerebrovasc., 2017, 26(11): 2587-2594. |
24 | LIU M Y, XIE F, ZHANG Y, et al.. Molecular hydrogen suppresses glioblastoma growth via inducing the glioma stem-like cell differentiation[J/OL]. Stem Cell. Res. Ther., 2019, 10: 145[2023-11-24]. . |
25 | CHEN J B, KONG X F, LV Y Y, et al.. "Real world survey" of hydrogen-controlled cancer: a follow-up report of 82 advanced cancer patients[J]. Med. Gas Res., 2019, 9(3): 115-121. |
26 | KANG K M, KANG Y N, CHOI I B, et al.. Effects of drinking hydrogen-rich water on the quality of life of patients treated with radiotherapy for liver tumors[J/OL]. Med. Gas Res., 2011, 1(1): 11[2011-06-07]. . |
27 | YORITAKA A, ABE T, OHTSUKA C, et al.. A randomized double-blind multi-center trial of hydrogen water for Parkinson's disease: protocol and baseline characteristics[J/OL]. BMC Neurol., 2016, 16: 66[2016-05-12]. . |
28 | ASADA R, TAZAWA K, SATO S, et al.. Effects of hydrogen-rich water prepared by alternating-current-electrolysis on antioxidant activity, DNA oxidative injuries, and diabetes-related markers[J]. Med. Gas Res., 2020, 10(3): 114-121. |
29 | KAJIYAMA S, HASEGAWA G, ASANO M, et al.. Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance[J]. Nutr. Res., 2008, 28(3): 137-143. |
30 | NAGATANI K, NAWASHIRO H, TAKEUCHI S, et al.. Safety of intravenous administration of hydrogen-enriched fluid in patients with acute cerebral ischemia: initial clinical studies[J/OL]. Med. Gas Res., 2013, 3: 13[2023-11-24]. . |
31 | GAO Y, GUI Q F, JIN L, et al.. Hydrogen-rich saline attenuates hippocampus endoplasmic reticulum stress after cardiac arrest in rats[J]. Neurosci. Lett., 2017, 640: 29-36. |
32 | CHEN S, ZHU Y, XU Q, et al.. Photocatalytic glucose depletion and hydrogen generation for diabetic wound healing[J/OL]. Nat. Commun., 2022, 13(1): 5684[2023-11-24]. . |
33 | KOU Z, ZHAO P H, WANG Z H, et al.. Acid-responsive H2-releasing Fe nanoparticles for safe and effective cancer therapy[J]. J. Mater. Chem. B, 2019, 7(17): 2759-2765. |
34 | HE Y J, ZHANG B, CHEN Y H, et al.. Image-guided hydrogen gas delivery for protection from myocardial ischemia-reperfusion injury via microbubbles[J]. Acs Appl. Mater. Inter., 2017, 9(25): 21190-21199. |
35 | YAMAMOTO R, HOMMA K, SUZUKI S, et al.. Hydrogen gas distribution in organs after inhalation: real-time monitoring of tissue hydrogen concentration in rat[J/OL]. Sci. Rep., 2019, 9: 1255[2019-02-15]. . |
36 | KUROKAWA R, HIRANO S, ICHIKAWA Y, et al.. Preventing explosions of hydrogen gas inhalers[J]. Med. Gas Res., 2019, 9(3): 160-162. |
37 | KUROKAWA R, SEO T, SATO B, et al.. Convenient methods for ingestion of molecular hydrogen: drinking, injection, and inhalation[J/OL]. Med. Gas Res., 2015, 5: 13[2023-11-24]. . |
38 | CHENG J, TANG C, LI X, et al.. Hydrogen molecules can modulate enzymatic activity and structural properties of pepsin in vitro[J/OL]. Colloid. Surfaces B, 2020, 189: 110856[2020-02-07]. . |
39 | TAN M, SUN X, GUO L, et al.. Hydrogen as additive of HTK solution fortifies myocardial preservation in grafts with prolonged cold ischemia[J]. Int. J. Cardiol., 2013, 167(2): 383-390. |
40 | KAWAMURA T, HUANG C S, PENG X, et al.. The effect of donor treatment with hydrogen on lung allograft function in rats[J]. Surgery, 2011, 150: 240-249. |
41 | TAMAKI I, HATA K, OKAMURA Y, et al.. Hydrogen flush after cold storage as a new end-ischemic ex vivo treatment for liver grafts against ischemia/reperfusion injury[J]. Liver Transpl., 2018, 24(11): 1589-1602. |
42 | ABE T, LI X K, YAZAWA K, et al.. Hydrogen-rich university of wisconsin solution attenuates renal cold ischemia-reperfusion injury[J]. Transplantation, 2012, 94(1): 14-21. |
43 | IGARASHI T, OHSAWA I, KOBAYASHI M, et al.. Effects of hydrogen in prevention of corneal endothelial damage during phacoemulsification: a prospective randomized clinical trial[J]. Am. J. Ophthalmol., 2019, 207: 10-17. |
44 | ZHOU G, GOSHI E, HE Q. Micro/nanomaterials-augmented hydrogen therapy[J/OL]. Adv. Healthc. Mater., 2019, 8(16): 1900463[2023-11-24]. . |
45 | BALDINI M, COPPA V, FALCIONI D, et al.. Use of resorbable magnesium screws in children: systematic review of the literature and short-term follow-up from our series[J]. J. Child. Orthop., 2021, 15(3): 194-203. |
46 | 洪嘉颖,张涛.可降解镁基金属骨感染修复材料的研究进展[J].实用医学杂志,2022,38(12):1449-1455. |
HONG J Y, ZHANG T. Research progress of biodegradable Mg-based metals as bone infection repair material[J]. J. Pract. Med., 2022, 38(12): 1449-1455. | |
47 | KONG L, CHEN C, MOU F, et al.. Magnesium particles coated with mesoporous nanoshells as sustainable therapeutic-hydrogen suppliers to scavenge continuously generated hydroxyl radicals in long term[J/OL]. Part. Part. Syst. Char., 2018, 36(2): 1800424[2018-12-18]. . |
48 | HWANG H S, KIM H A. Chondrocyte apoptosis in the pathogenesis of osteoarthritis[J]. Int. J. Mol. Sci., 2015, 16(11): 26035-26054. |
49 | LI D, WANG W C. Can hydrogen retard the progression of osteoarthritis?[J]. Afri. J. Pharm. Pharmacol., 2012, 6(5): 352-354. |
50 | WAN W L, LIN Y J, SHIH P C, et al.. An insitu depot for continuous evolution of gaseous H2 mediated by a magnesium passivation/activation cycle for treating osteoarthritis[J]. Angew. Chem. Int. Edit., 2018, 57(31): 9875-9879. |
51 | WANG P, WU J, YANG H, et al.. Intelligent microneedle patch with prolonged local release of hydrogen and magnesium ions for diabetic wound healing[J]. Bioact. Mater., 2023, 24: 463-476. |
52 | MA N, CHEN Y M, YANG B C. Magnesium metal-A potential biomaterial with antibone cancer properties[J]. J. Biomed. Mater. Res. A, 2014, 102(8): 2644-2651. |
53 | YANG T, JIN Z K, WANG Z H, et al.. Intratumoral high-payload delivery and acid-responsive release of H2 for efficient cancer therapy using the ammonia borane-loaded mesoporous silica nanomedicine[J]. Appl. Mater. Today, 2018, 11: 136-143. |
54 | ZHANG T, WANG Y, LI R, et al.. ROS-responsive magnesium-containing microspheres for antioxidative treatment of intervertebral disc degeneration[J]. Acta Biomater., 2023, 158: 475-492. |
55 | ZHAO B, WANG Y, YAO X, et al.. Photocatalysis-mediated drug-free sustainable cancer therapy using nanocatalyst[J/OL]. Nat. Commun., 2021, 12(1): 1345[2023-11-24]. . |
56 | PLUTA R, JANUSZEWSKI S, CZUCZWAR S J. Neuroinflammation in post-ischemic neurodegeneration of the brain: friend, foe, or both?[J/OL]. Int. J. Mol. Sci., 2021, 22(9): 4405[2023-11-24]. . |
57 | PLUTA R, KIS J, JANUSZEWSKI S, et al.. Cross-talk between amyloid, tau protein and free radicals in post-ischemic brain neurodegeneration in the form of Alzheimer's disease proteinopathy[J/OL]. Antioxidants, 2022, 11(1): 146[2022-01-09]. . |
58 | ZHANG Z Y, FANG Y J, LUO Y J, et al.. The role of medical gas in stroke: an updated review[J]. Med. Gas Res., 2019, 9(4): 221-228. |
59 | LI H, LUO Y, YANG P F, et al.. Hydrogen as a complementary therapy against ischemic stroke: a review of it the evidence[J]. J. Neurol. Sci., 2019, 396: 240-246. |
60 | HAYASHIDA K, SANO M, KAMIMURA N, et al.. Hydrogen inhalation during normoxic resuscitation improves neurological outcome in a rat model of cardiac arrest independently of targeted temperature management[J]. Circulation, 2014, 130(24): 2173-2180. |
61 | LIN Y T, SHI Q Q, ZHANG L, et al.. Hydrogen-rich water ameliorates neuropathological impairments in a mouse model of Alzheimer's disease through reducing neuroinflammation and modulating intestinal microbiota[J]. Neural Regen. Res., 2022, 17(2): 409-417. |
62 | PLUTA R, JANUSZEWSKI S, CZUCZWAR S J. Molecular hydrogen neuroprotection in post-ischemic neurodegeneration in the form of Alzheimer's disease proteinopathy: underlying mechanisms and potential for clinical implementation-fantasy or reality?[J/OL]. Int. J. Mol. Sci., 2022, 23(12): 6591[2023-11-24]. . |
63 | COLE A R, PERRY D A, RAZA A, et al.. Perioperatively inhaled hydrogen gas diminishes neurologic injury following experimental circulatory arrest in swine[J]. Jacc-Basic Transl. Sci., 2019, 4(2): 176-187. |
64 | YANG H, LIU S, DU H, et al.. Hydrogen attenuates myocardial injury in rats by regulating oxidative stress and NLRP3 inflammasome mediated pyroptosis[J]. Int. J. Med. Sci., 2021, 18(14): 3318-3325. |
65 | XU Q, CHEN S, JIANG L, et al.. Sonocatalytic hydrogen/hole-combined therapy for anti-biofilm and infected diabetic wound healing[J/OL]. Natl. Sci. Rev., 2023, 10(5): nwad063[2023-05-01]. . |
66 | XIA C, WU A, JIN Z, et al.. Mesocrystalline ZnS nanoparticles-augmented sonocatalytic full water splitting into H2/O2 for immunoactivating deep tumor[J/OL]. Biomaterials, 2023, 296: 122090[2023-11-24]. . |
67 | SHANG L, XIE F, LI J L, et al.. Therapeutic potential of molecular hydrogen in ovarian cancer[J]. Transl. Cancer Res., 2018, 7(4): 988-995. |
[1] | 李骏, 宋怡菲, 仪杨, 马晨, 张黄子怡, 杜琳琳, 李峻宇, 谢飞, 马雪梅. 气体信号分子的血红素蛋白靶点研究进展[J]. 生物技术进展, 2023, 13(4): 499-508. |
[2] | 蔡子松, 赵鹏翔, 张旭娟, 刘子怡, 刘梦昱, 谢飞, 马晨. 氢气在创伤救治中的应用研究进展[J]. 生物技术进展, 2023, 13(3): 375-382. |
[3] | 张景怡, 姜雪, 马思禺, 冯智超, 仪杨, 马晨, 宋怡菲, 谢飞. 氢气对颅脑损伤的保护作用研究进展[J]. 生物技术进展, 2023, 13(2): 234-239. |
[4] | 王士博, 刘金娟. 香蕉皮抗氧化和抑制人肝癌HepG2细胞活性研究[J]. 生物技术进展, 2023, 13(1): 140-145. |
[5] | 刘梓嘉, 姜雪, 仪杨, 王濛, 马晨, 宋怡菲, 谢飞. 氢气与肠道菌群的关系研究进展[J]. 生物技术进展, 2022, 12(6): 847-852. |
[6] | 赵开拓, 李志龙, 贺达. 内陆水体盐度升高对小球藻生理特性的影响[J]. 生物技术进展, 2022, 12(6): 894-899. |
[7] | 陶鸽如, 秦树存. 氢生物医学效应在疏解自由基氧化应激的分子机制[J]. 生物技术进展, 2022, 12(4): 490-496. |
[8] | 杜健, 田志刚, 林桦, 谢克亮. 氢气吸入对肺癌根治患者术后谵妄的影响[J]. 生物技术进展, 2022, 12(4): 510-515. |
[9] | 赵鹏翔, 谢飞, 刘梦昱, ADZAVON Yao Mawulikplimi, 马雪梅. 氢气生物医学研究进展[J]. 生物技术进展, 2021, 11(4): 503-517. |
[10] | 薛琴琴,,韩贝贝,吴雪晴,李沛,李莹莹,,吴庆钰. 纳米材料在农作物领域的应用及展望[J]. 生物技术进展, 2020, 10(6): 655-660. |
[11] | 徐蕾,肖桂清,盛晓菁,戚智青,刁勇. PCR增强剂在核酸体外扩增检测技术的研究进展[J]. 生物技术进展, 2020, 10(2): 137-143. |
[12] | 张昭,魏娅楠,仪杨,马胜男,张晓康,马雪梅,张鑫. 水相中氢气浓度检测方法的建立[J]. 生物技术进展, 2020, 10(2): 158-163. |
[13] | 王程,窦文芳,何丽丽. 微生物糖基转移酶催化合成槲皮素糖苷及其抗炎活性评价[J]. 生物技术进展, 2020, 10(2): 170-175. |
[14] | 马雪梅,张鑫,谢飞,赵鹏翔,张昭,仪杨,张晓康,马胜男,李秦剑,吕宝北,刘梦昱,YAO Mawulikplimi Adzavon,孙学军,李英贤. 氢气生物学作用的生物酶基础[J]. 生物技术进展, 2020, 10(1): 15-22. |
[15] | 徐雄峰,邱波,李华杰,易鹏. 壳聚糖薄膜培养对脐带间充质干细胞抗炎基因表达的影响[J]. 生物技术进展, 2019, 9(4): 404-408. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部