1 |
SANDER J D, JOUNG J K. CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nat. Biotechnol., 2014, 32: 347-355.
|
2 |
PENG C, WANG H, XU X,et al.. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction[J]. Plant J., 2018, 95(3): 557-567.
|
3 |
郑红艳, 王磊. CRISPR/Cas基因编辑技术及其在作物育种中的应用[J]. 生物技术进展, 2018, 8(3):185-190.
|
|
ZHENG H Y, WANG L. The CRISPR/Cas gene editing technology and application in crop breeding[J]. Curr.Biotechnol., 2018, 8(3): 185-190.
|
4 |
ZHANG H X, ZHANG Y, YIN H. Genome editing with mRNA encoding ZFN, TALEN, and Cas9[J]. Mol.Ther., 2019, 27(4):735-746.
|
5 |
王梦雨, 王颢潜, 王旭静,等. 基因编辑产品检测技术研究进展[J]. 生物技术进展, 2021, 11(4): 438-445.
|
|
WANG M Y, WANG H Q, WANG X J, et al., Research progress of gene editing products detection technology[J]. Curr. Biotehnol., 2021, 11(4): 438-445.
|
6 |
解美霞, 王燕, 赵新, 等. 基于焦磷酸测序技术建立基因编辑水稻检测方法[J]. 生物技术进展, 2020, 10(6):668-673.
|
|
XIE M X, WANG Y, ZHAO X, et al.. Pyrosequencing-based detection method of gene edited rice[J]. Curr.Biotechnol., 2020, 10(6): 668-673.
|
7 |
刘春霞, 耿立召, 许建平. 植物基因组编辑检测方法[J]. 遗传, 2018, 40(12):1075-1091.
|
|
LIU C X, GENG L Z, XU J P. Detection methods of genome editing in plants[J]. Hereditas, 2018, 40(12): 1075-1091.
|
8 |
张笑天, 王智, 朱鹏宇, 等. 一种基于定量PCR的CRISPR/Cas9基因编辑作物快速检测方法的研究[J]. 生物技术进展, 2023, 13(6):907-912.
|
|
ZHANG X T, WANG Z, ZHU P Y, et al.. A rapid detection method based on qPCR for CRISPR/Cas9 edited crops[J]. Curr.Biotechnol., 2023, 13(6): 907-912.
|
9 |
DONG O X, YU S, JAIN R, et al.. Marker-free carotenoid-enriched rice generated through targeted gene insertion using CRISPR-Cas9[J/OL]. Nat. Commun., 2020, 11:1178[2025-01-20]. .
|
10 |
NISHIZAWA-YOKOI A, TOKI S. A piggyBac-mediated transgenesis system for the temporary expression of CRISPR/Cas9 in rice[J]. Plant Biotechnol. J., 2021, 19(7): 1386-1395.
|
11 |
ZHANG C Q, ZHU J H, CHEN S J, et al.. Wxlv,the ancestral allele of rice waxy gene[J]. Mol. Plant, 2019, 12(8): 1157-1166.
|
12 |
DENG Z Y, LIU Y X, GONG C Y, et al.. Waxy is an important factor for grain fissure resistance and head rice yield as revealed by a genome-wide association study[J]. J.Exp.Bot., 2022, 73(19): 6942-6954.
|
13 |
ZHANG C, YANG Y, CHEN S, et al.. A rare Waxy allele coordinately improves rice eating and cooking quality and grain transparency[J]. J. Integr. Plant Biol., 2021, 63(5): 889-901.
|
14 |
WANG B, ZHANG H, HONG R, et al.. Wx gene editing via CRISPR/Cas9 system in rice[J]. Chin. J. Rice Sci., 2018, 32(1):35-42.
|
15 |
马斯霜, 白海波, 惠建, 等. CRISPR/Cas9技术及其在水稻和小麦遗传改良中的应用综述[J]. 江苏农业科学, 2019, 47(20):29-33.
|
|
MA S S, BAI H B, HUI J, et al.. Application of CRISPR/Cas9 technology in rice and wheat genetic improvement: a review[J]. Jiangsu Agric. Sci., 2019, 47(20): 29-33.
|
16 |
刘巧泉, 王宗阳, 陈秀花, 等. 反义waxy基因转化水稻降低胚乳直链淀粉含量的研究[C]. 中国农学会水稻遗传育种国际学术讨论会, 1999.
|
17 |
王新其, 沈革志, 程磊, 等. 水稻蜡质基因(Wx)反义片段在转基因后代中的遗传稳定性[J]. 上海农业学报, 2003, 19(2):12-16.
|
|
WANG X Q, SHEN G Z, CHENG L, et al.. The genetic stability of antisense Waxy gene segment in the progeny of transgenic plants in rice[J]. Acta Agric. Shanghai, 2003, 19(2): 12-16.
|
18 |
赵立群, 邱艳红, 张晓飞, 等. TaqMan探针法实时荧光定量PCR检测西瓜潜隐病毒[J]. 中国农业科学, 2021, 54(20):4337-4347.
|
|
ZHAO L Q, QIU Y H, ZHANG X F, et al.. The detection of Citrullus lanatus cryptic virus using TaqMan-qPCR method[J]. Sci. Agric. Sin., 2021, 54(20): 4337-4347.
|
19 |
LINDNER L, CAYROU P, JACQUOT S, et al.. Reliable and robust droplet digital PCR (ddPCR) and RT-ddPCR protocols for mouse studies[J]. Methods, 2021, 191: 95-106.
|
20 |
IOANNIDES M, ACHILLEOS A, KYRIAKOU S, et al.. Development of a new methylation-based fetal fraction estimation assay using multiplex ddPCR[J/OL]. Mol. Genet. Genom. Med., 2020, 8(2): e1094[2025-01-20]. .
|
21 |
KOJABAD A A, FARZANEHPOUR M, GALEH H E G, et al..Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives[J]. J. Med. Virol., 2021, 93(7):4182-4197.
|
22 |
CAO Y, YU M, DONG G, et al.. Digital PCR as an emerging tool for monitoring of microbial biodegradation[J/OL]. Malecules, 2020, 25(3):706[2025-01-20]. .
|
23 |
DONIA T D. qRT-PCR for enterovirus detection: conversion to ultrafast protocols[J]. J. King Saud Univ.Sci., 2018, 30(2): 180-184.
|
24 |
MA H, BELL K N, LOKER R N. qPCR and qRT-PCR analysis:regulatory points to consider when conducting biodistribution and vector shedding studies[J]. Mol. Ther. Meth. Clin. Dev., 2021, 20: 152-168.
|
25 |
缪青梅, 赵杨, 徐晓丽, 等. 转g10-epsps基因耐除草剂大豆ZUTS-33转化体特异性检测方法的建立[J]. 生物技术进展,2020, 10(6):696-703.
|
|
MIAO Q M, ZHAO Y, XU X L, et al.. Establishment of transformant-specific detection method for the herbicide-tolerant transgenic soybean event ZUTS-33 harboring the g10-epsps transgene[J]. Curr. Biotechnol., 2020, 10(6): 696-703.
|
26 |
武文艳, 刘新香, 周秒依, 等. 转基因玉米2A-5特异性PCR方法的建立[J]. 生物技术进展, 2020, 10(4):363-370.
|
|
WU W Y, LIU X X, ZHOU M Y, et al.. Establishment of event-specific PCR detection method of transgenic maize line 2A-5[J]. Curr. Biotechnol., 2020, 10(4): 363-370.
|