[1] |
世界卫生组织. 国际卫生条例(2005)突发事件委员会第十四次会议关于新型冠状病毒肺炎(COVID-19)大流行的声明[EB/OL]. (2023-01-30) [2024-12-20]. .
|
[2] |
MERCER A. Protection against severe infectious disease in the past[J]. Pathog. Glob. Health, 2021, 115(3): 151-167.
|
[3] |
LAZCKA O, DEL CAMPO F J, MUÑOZ F X. Pathogen detection: a perspective of traditional methods and biosensors[J]. Biosens. Bioelectron., 2007, 22(7): 1205-1217.
|
[4] |
GRACIAS K S, MCKILLIP J L. A review of conventional detection and enumeration methods for pathogenic bacteria in food[J]. Can. J. Microbiol., 2004, 50(11): 883-890.
|
[5] |
CESEWSKI E, JOHNSON B N. Electrochemical biosensors for pathogen detection[J/OL]. Biosens. Bioelectron., 2020, 159: 112214[2025-03-25]. .
|
[6] |
张春雷.病原微生物检测技术研究进展[J].生物技术进展,2024,14(2):189-195.
|
|
ZHANG C L. Pathogens detection technology: a review[J]. Curr. Biotechnol., 2024, 14(2): 189-195.
|
[7] |
AHMAD W, GONG Y, ABBAS G, et al.. Evolution of low-dimensional material-based field-effect transistors[J]. Nanoscale, 2021, 13(10): 5162-5186.
|
[8] |
SADIGHBAYAN D, HASANZADEH M, GHAFAR-ZADEH E. Biosensing based on field-effect transistors (FET): recent progress and challenges[J/OL]. Trends Analyt. Chem., 2020, 133: 116067[2025-03-25]. .
|
[9] |
KAISTI M. Detection principles of biological and chemical FET sensors[J]. Biosens. Bioelectron., 2017, 98: 437-448.
|
[10] |
WANG J, CHEN D, HUANG W, et al.. Aptamer-functionalized field-effect transistor biosensors for disease diagnosis and environmental monitoring[J/OL]. Exploration, 2023, 3(3): 20210027[2025-03-25]. .
|
[11] |
ZHANG X, LIU T, BOYLE A, et al.. Dielectric-modulated biosensing with ultrahigh-frequency-operated graphene field-effect transistors[J/OL]. Adv. Mater., 2022, 34(7): e2106666[2025-03-25]. .
|
[12] |
KONG D, WANG X, GU C, et al.. Direct SARS-CoV-2 nucleic acid detection by Y-shaped DNA dual-probe transistor assay[J]. J. Am. Chem. Soc., 2021, 143(41): 17004-17014.
|
[13] |
ZHANG Y, CHEN B, CHEN D, et al.. Electrical detection assay based on programmable nucleic acid probe for efficient single-nucleotide polymorphism identification[J]. ACS Sens., 2023, 8(5): 2096-2104.
|
[14] |
WANG X, KONG D, GUO M, et al.. Rapid SARS-CoV-2 nucleic acid testing and pooled assay by tetrahedral DNA nanostructure transistor[J]. Nano Lett., 2021, 21(22): 9450-9457.
|
[15] |
WU Y, JI D, DAI C, et al.. Triple-probe DNA framework-based transistor for SARS-CoV-2 10-in-1 pooled testing[J]. Nano Lett., 2022, 22(8): 3307-3316.
|
[16] |
LIANG Y, XIAO M, XIE J, et al.. Amplification-free detection of SARS-CoV-2 down to single virus level by portable carbon nanotube biosensors[J/OL]. Small, 2023, 19(34): e2208198[2025-03-25]. .
|
[17] |
WANG L, WANG X, WU Y, et al.. Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples[J]. Nat. Biomed. Eng., 2022, 6(3): 276-285.
|
[18] |
LI J, WU D, YU Y, et al.. Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor nanosensor[J/OL]. Biosens. Bioelectron., 2021, 183: 113206[2025-03-25]. .
|
[19] |
MEI J, LI Y T, ZHANG H, et al.. Molybdenum disulfide field-effect transistor biosensor for ultrasensitive detection of DNA by employing morpholino as probe[J]. Biosens. Bioelectron., 2018, 110: 71-77.
|
[20] |
CAI B, HUANG L, ZHANG H, et al.. Gold nanoparticles-decorated graphene field-effect transistor biosensor for femtomolar microRNA detection[J]. Biosens. Bioelectron., 2015, 74: 329-334.
|
[21] |
LI J, TANG L, LI T, et al.. Tandem Cas13a/crRNA-mediated CRISPR-FET biosensor: a one-for-all check station for virus without amplification[J]. ACS Sens., 2022, 7(9): 2680-2690.
|
[22] |
李加好.基于石墨烯场效应晶体管生物传感器的病毒核酸免扩增、高灵敏检测[D].武汉: 湖北中医药大学, 2022.
|
[23] |
LI H, YANG J, WU G, et al.. Amplification-free detection of SARS-CoV-2 and respiratory syncytial virus using CRISPR Cas13a and graphene field-effect transistors[J/OL]. Angew. Chem. Int. Ed., 2022, 61(32): e202203826[2025-03-25]. .
|
[24] |
USLU F, INGEBRANDT S, MAYER D, et al.. Labelfree fully electronic nucleic acid detection system based on a field-effect transistor device[J]. Biosens. Bioelectron., 2004, 19(12): 1723-1731.
|
[25] |
HAN Y, OFFENHÄUSSER A, INGEBRANDT S. Detection of DNA hybridization by a field-effect transistor with covalently attached catcher molecules[J]. Surf. Interface Anal., 2006, 38(4): 176-181.
|
[26] |
HUA Y, MA J, LI D, et al.. DNA-based biosensors for the biochemical analysis: a review[J/OL]. Biosensors, 2022, 12(3): 183[2025-03-25]. .
|
[27] |
HONG S, JIANG W, DING Q, et al.. The current progress of tetrahedral DNA nanostructure for antibacterial application and bone tissue regeneration[J]. Int. J. Nanomedicine, 2023, 18: 3761-3780.
|
[28] |
NING Y, HU J, LU F. Aptamers used for biosensors and targeted therapy[J/OL]. Biomed. Pharmacother., 2020, 132: 110902[2025-03-25]. .
|
[29] |
戴邵亮.基于适配体的沙门氏菌检测方法研究进展[J].食品安全质量检测学报,2019,10(14):4589-4596.
|
|
DAI S L. Research progress of detection method of Salmonella based on aptamer[J]. J. Food Saf. Qual., 2019, 10(14): 4589-4596.
|
[30] |
MA H, LIU J, ALI M M, et al.. Nucleic acid aptamers in cancer research, diagnosis and therapy[J]. Chem. Soc. Rev., 2015, 44(5): 1240-1256.
|
[31] |
ZHANG G J, ZHANG G, CHUA J H, et al.. DNA sensing by silicon nanowire: charge layer distance dependence[J]. Nano Lett., 2008, 8(4): 1066-1070.
|
[32] |
PELLESTOR F, PAULASOVA P. The peptide nucleic acids, efficient tools for molecular diagnosis (review)[J]. Int. J. Mol. Med., 2004, 13(4): 521-525.
|
[33] |
GUO D, ZHUO M, ZHANG X, et al.. Indium-tin-oxide thin film transistor biosensors for label-free detection of avian influenza virus H5N1[J]. Anal. Chim. Acta, 2013, 773: 83-88.
|
[34] |
LIANG Y, XIAO M, WU D, et al.. Wafer-scale uniform carbon nanotube transistors for ultrasensitive and label-free detection of disease biomarkers[J]. ACS Nano, 2020, 14(7): 8866-8874.
|
[35] |
RAJAN A, SHRIVASTAVA S, JANHAW I, et al.. CRISPR-Cas system: from diagnostic tool to potential antiviral treatment[J]. Appl. Microbiol. Biotechnol., 2022, 106(18): 5863-5877.
|
[36] |
ZHAO L, QIU M, LI X, et al.. CRISPR-Cas13a system: a novel tool for molecular diagnostics[J/OL]. Front. Microbiol., 2022, 13: 1060947[2025-03-25]. .
|
[37] |
FORSYTH R, DEVADOSS A, GUY O J. Graphene field effect transistors for biomedical applications: current status and future prospects[J/OL]. Diagnostics, 2017, 7(3): 45[2025-03-25]. .
|
[38] |
HWANG M T, WANG Z, PING J, et al.. DNA nanotweezers and graphene transistor enable label-free genotyping[J/OL]. Adv. Mater., 2018: e1802440[2025-03-25]. .
|
[39] |
SUN Y, YANG C, JIANG X, et al.. High-intensity vector signals for detecting SARS-CoV-2 RNA using CRISPR/Cas13a couple with stabilized graphene field-effect transistor[J/OL]. Biosens. Bioelectron., 2023, 222: 114979[2025-03-25]. .
|
[40] |
WANG Q, BAO L, WANG L, et al.. Duplex-specific-nuclease-assisted graphene field-effect transistor biosensor: a novel platform for preamplification-free detection of cancer related miRNA[J/OL]. Carbon, 2024, 230: 119670[2025-03-25]. .
|
[41] |
FU W, FENG L, MAYER D, et al.. Electrolyte-gated graphene ambipolar frequency multipliers for biochemical sensing[J]. Nano Lett., 2016, 16(4): 2295-2300.
|
[42] |
陈硕,高佳奇,王迪,等.DNA四面体纳米结构及其在生物技术领域的应用进展[J].生物技术进展,2020,10(6):661-667.
|
|
CHEN S, GAO J Q, WANG D, et al.. DNA tetrahedral nanostructure and its application progress in biotechnology[J]. Curr. Biotechnol., 2020, 10(6): 661-667.
|
[43] |
JEONG S, SON S U, KIM J, et al.. Rapid and simultaneous multiple detection of a tripledemic using a dual-gate oxide semiconductor thin-film transistor-based immunosensor[J/OL]. Biosens. Bioelectron., 2023, 241: 115700[2025-03-25]. .
|
[44] |
TU J, MIN J, SONG Y, et al.. A wireless patch for the monitoring of C-reactive protein in sweat[J]. Nat. Biomed. Eng., 2023, 7(10): 1293-1306.
|