生物技术进展 ›› 2023, Vol. 13 ›› Issue (1): 30-38.DOI: 10.19586/j.2095-2341.2022.0089
收稿日期:
2022-05-26
接受日期:
2022-08-18
出版日期:
2023-01-25
发布日期:
2023-02-07
通讯作者:
余红秀
作者简介:
赵文卓 E-mail: 21211510023@m.fudan.edu.cn;
基金资助:
Wenzhuo ZHAO(), Chengxun LI, Zuojian HU, Hongxiu YU(
)
Received:
2022-05-26
Accepted:
2022-08-18
Online:
2023-01-25
Published:
2023-02-07
Contact:
Hongxiu YU
摘要:
由食源性致病菌引发的疾病对人类健康构成巨大威胁。虽然一些致病菌如金黄色葡萄球菌、大肠杆菌和沙门氏菌等在诊断和预防方面已经取得了重大进展,但开发快速、高效、低成本的检测方法仍然是一项挑战。功能核酸(functional nucleic acids,FNAs)是一类功能超出核酸常规遗传作用的核酸,主要包括天然的核酶(RNAzymes)、核糖开关(riboswitches)以及体外通过指数富集配体系统进化技术(systematic evolution of ligands by exponential enrichment,SELEX)筛选的适配体(aptamers)、核酶(RNAzymes)和脱氧核酶(DNAzymes)。适配体和脱氧核酶因具有较高的稳定性、特异性和可设计性,使其成为病原微生物识别的理想工具,近年来在生物传感和医学诊断领域备受关注。综述了功能核酸的筛选原理和流程、适配体及具有RNA裂解活性的脱氧核酶(RNA cleavage deoxyribozymes,RCDs)在致病菌检测中的应用进展和面临的挑战,并对其未来的发展前景进行了展望。
中图分类号:
赵文卓, 李成勋, 胡作建, 余红秀. 功能核酸用于致病菌检测的研究进展[J]. 生物技术进展, 2023, 13(1): 30-38.
Wenzhuo ZHAO, Chengxun LI, Zuojian HU, Hongxiu YU. Research Progress of Functional Nucleic Acid Used in Pathogenic Bacteria Detection[J]. Current Biotechnology, 2023, 13(1): 30-38.
检测方法 | 适用场所 | 优缺点 | 检测对象 | 检测元件 | 检测限/(CFU·mL-1) | 参考文献 |
---|---|---|---|---|---|---|
荧光法 | 实验室、机构检测 | 检出限较低,但需要相关仪器设备,成本高 | 苏云金芽孢杆菌(Bacillus thuringiensis) | 适配体 | 103 | [ |
副溶血弧菌和鼠伤寒沙门氏菌(Vibrio parahaemolyticus and Salmonella typhimurium) | 适配体 | 5×103 | [ | |||
大肠杆菌ATCC 8739(Escherichia coli) | 适配体 | 3 | [ | |||
鼠伤寒沙门氏菌(Salmonella typhimurium) | 适配体 | 50 | [ | |||
大肠杆菌(Escherichia coli) | RCDs | 103 | [ | |||
肺炎克雷伯菌(Klebsiella Pneumoniae) | RCDs | 105 | [ | |||
鳗弧菌(Vibrio anguillarum) | RCDs | 4×103 | [ | |||
比色法 | 现场检测、实验室、机构检测 | 直观快速,不需要仪器支撑,成本低,但结果不易量化 | 金黄色葡萄球菌(Staphylococcus aureus) | 适配体 | 108 | [ |
阪崎肠杆菌(Cronobacter sakazakii) | 适配体 | 7.1×103 | [ | |||
幽门螺旋杆菌(Helicobacter pylori) | RCDs | 104 | [ | |||
金黄色葡萄球菌(Staphylococcus aureus) | RCDs | 105 | [ | |||
电化学法 | 现场检测、实验室、机构检测 | 灵敏度高,结果直观,但需要相关电子设备,成本较高 | 金黄色葡萄球菌(Staphylococcus aureus) | 适配体 | 41 | [ |
金黄色葡萄球菌(Staphylococcus aureus) | 适配体 | 39(缓冲液) 414(自来水) | [ | |||
大肠杆菌(Escherichia coli) | RCDs | 103 | [ |
表1 基于功能核酸检测致病菌的生物传感器性能比较
Table 1 Performance comparison of biosensors for detecting pathogenic bacteria based on functional nucleic acids
检测方法 | 适用场所 | 优缺点 | 检测对象 | 检测元件 | 检测限/(CFU·mL-1) | 参考文献 |
---|---|---|---|---|---|---|
荧光法 | 实验室、机构检测 | 检出限较低,但需要相关仪器设备,成本高 | 苏云金芽孢杆菌(Bacillus thuringiensis) | 适配体 | 103 | [ |
副溶血弧菌和鼠伤寒沙门氏菌(Vibrio parahaemolyticus and Salmonella typhimurium) | 适配体 | 5×103 | [ | |||
大肠杆菌ATCC 8739(Escherichia coli) | 适配体 | 3 | [ | |||
鼠伤寒沙门氏菌(Salmonella typhimurium) | 适配体 | 50 | [ | |||
大肠杆菌(Escherichia coli) | RCDs | 103 | [ | |||
肺炎克雷伯菌(Klebsiella Pneumoniae) | RCDs | 105 | [ | |||
鳗弧菌(Vibrio anguillarum) | RCDs | 4×103 | [ | |||
比色法 | 现场检测、实验室、机构检测 | 直观快速,不需要仪器支撑,成本低,但结果不易量化 | 金黄色葡萄球菌(Staphylococcus aureus) | 适配体 | 108 | [ |
阪崎肠杆菌(Cronobacter sakazakii) | 适配体 | 7.1×103 | [ | |||
幽门螺旋杆菌(Helicobacter pylori) | RCDs | 104 | [ | |||
金黄色葡萄球菌(Staphylococcus aureus) | RCDs | 105 | [ | |||
电化学法 | 现场检测、实验室、机构检测 | 灵敏度高,结果直观,但需要相关电子设备,成本较高 | 金黄色葡萄球菌(Staphylococcus aureus) | 适配体 | 41 | [ |
金黄色葡萄球菌(Staphylococcus aureus) | 适配体 | 39(缓冲液) 414(自来水) | [ | |||
大肠杆菌(Escherichia coli) | RCDs | 103 | [ |
图4 基于核酸适配体-金纳米颗粒的比色检测原理图[30]A:盐溶液中金纳米颗粒聚集,溶液呈紫色 B:盐溶液中适配体与金纳米颗粒结合并使其分散,溶液呈红色 C: 靶标物存在时,适配体和金纳米颗粒分离并与靶标物结合,金纳米颗粒聚集,溶液呈紫色。
Fig. 4 Schematic diagram of colorimetric detection based on aptamer-AuNPs[30]
1 | 白小莲,爱军.生物传感器在食源性致病菌大肠杆菌O157:H7检测中的应用进展[J].生物技术进展,2021,11(3):269-278. |
2 | WILCOCK A, PUN M, KHANONA J, et al.. Consumer attitudes,knowledge and behaviour: a review of food safety issues[J].Trends Food Sci. Tech., 2004, 15(2): 56-66. |
3 | 常仁亮.制定及应用食品微生物标准的原则CAC/GL21-1997[J]. 现代渔业信息,1999(7):17-19. |
4 | 中华人民共和国食品安全法(节选)[J]. 粮食科技与经济, 2022, 47(S1): 10-15. |
5 | TAIT E, PERRY J D, STANFORTH S P, et al.. Use of volatile compounds as a diagnostic tool for the detection of pathogenic bacteria[J]. Trac-Trend Anal. Chem., 2014, 53: 117-125. |
6 | BHARDWAJ N, BHARDWAJ S K, NAYAK M K, et al.. Fluorescent nanobiosensors for the targeted detection of foodborne bacteria[J]. Trac-Trend Anal. Chem., 2017, 97: 120-135. |
7 | 吴一凡,林晟豪,许文涛.小分子靶标的核糖开关生物传感器研究进展[J]. 生物技术进展, 2022, 12(2): 168-175. |
8 | LI Y, LU Y. Functional nucleic acids for analytical applications[M]. New York: Springer, 2009. |
9 | 许文涛,杨敏,朱龙佼,等.功能核酸概念的内涵与外延[J]. 生物技术进展, 2021, 11(4): 446-454. |
10 | 王琦,颜春蕾,高洪伟,等.基于核酸适配体传感器检测食品致病菌的研究进展[J]. 生物技术通报, 2020, 36(11): 245-258. |
11 | YOU K M, LEE S H, IM A, et al.. Aptamers as functional nucleic acids: in vitro selection and biotechnological applications[J]. Biotechnol. Bioproc. E., 2003, 8(2): 64-75. |
12 | MIYAKE Y, TOGASHI H, TASHIRO M, et al.. Mercury(II)-mediated formation of thymine-Hg-II-thymine base pairs in DNA duplexes[J]. J. Am. Chem. Soc., 2006, 128(7): 2172-2173. |
13 | ELLINGTON A D, SZOSTAK J W. Invitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346(6287): 818-822. |
14 | TUERK C, GOLD L. Systematic evolution of ligands by exponential enrichment-RNA ligands to bacteriophage-T4 DNA-polymerase[J]. Science, 1990, 249(4968): 505-510. |
15 | BRUNO J G. In vitro selection of DNA to chloroaromatics using magnetic microbead-based affinity separation and fluorescence detection[J]. Biochem. Bioph. Res. Co., 1997, 234(1): 117-120. |
16 | MENDONSA S D, BOWSER M T. In vitro evolution of functional DNA using capillary electrophoresis[J]. J. Am. Chem. Soc., 2004, 126(1): 20-21. |
17 | MENDONSA S D, BOWSER M T. In vitro selection of high-affinity DNA ligands for human IgE using capillary electrophoresis[J]. Anal. Chem., 2004, 76(18): 5387-5392. |
18 | DANIELS D A, CHEN H, HICKE B J, et al.. A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment[J]. Proc. Natl. Acad. Sci. USA, 2003, 100(26): 15416-15421. |
19 | BEREZOVSKI M, MUSHEEV M, DRABOVICH A, et al.. Non-SELEX selection of aptamers[J]. J. Am. Chem. Soc., 2006, 128(5): 1410-1411. |
20 | BEREZOVSKI M V, MUSHEEV M U, DRABOVICH A P, et al.. Non-SELEX: selection of aptamers without intermediate amplification of candidate oligonucleotides[J]. Nat. Protoc., 2006, 1(3): 1359-1369. |
21 | CHEN Z H, ZENG Z H, WAN Q Y, et al.. Targeted immunotherapy of triple-negative breast cancer by aptamer-engineered NK cells[J/OL]. Biomaterials, 2022, 280:121259[2021-11-15]. |
22 | KEIJZER J F, FIRET J, ALBADA B. Site-selective and inducible acylation of thrombin using aptamer-catalyst conjugates[J]. Chem. Commun., 2021, 57(96): 12960-12963. |
23 | IKANOVIC M, RUDZINSKI W E, BRUNO J G, et al.. Fluorescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis spores[J]. J. Fluoresc., 2007, 17(2): 193-199. |
24 | DUAN N, WU S, YU Y, et al.. A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels[J]. Anal. Chim. Acta, 2013, 804: 151-158. |
25 | JIN B, WANG S, LIN M, et al.. Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection[J]. Biosens. Bioelectron., 2017, 90: 525-533. |
26 | WANG R J, XU Y, ZHANG T, et al.. Rapid and sensitive detection of Salmonella typhimurium using aptamer-conjugated carbon dots as fluorescence probe[J]. Anal. Methods, 2015, 7(5): 1701-1706. |
27 | YOUSEFI H, ALI M M, SU H M, et al.. Sentinel wraps: real-time monitoring of food contamination by printing DNAzyme probes on food packaging[J]. ACS Nano, 2018, 12(4): 3287-3294. |
28 | ALI M M, SLEPENKIN A, PETERSON E, et al.. A simple DNAzyme-based fluorescent assay for Klebsiella pneumoniae [J]. Chembiochem, 2019, 20(7): 906-910. |
29 | GU L, YAN W, WU H, et al.. Selection of DNAzymes for sensing aquatic bacteria: Vibrio anguillarum [J]. Anal. Chem., 2019, 91(12): 7887-7893. |
30 | CHANG T, WANG L, ZHAO K, et al.. Duplex identification of Staphylococcus aureus by aptamer and gold nanoparticles[J]. J. Nanosci. Nanotechnol., 2016, 16(6): 5513-5519. |
31 | KIM H S, KIM Y J, CHON J W, et al.. Two-stage label-free aptasensing platform for rapid detection of Cronobacter sakazakii in powdered infant formula[J]. Sensor. Actuat. B-Chem., 2017, 239: 94-99. |
32 | ALI M M, WOLFE M, TRAM K, et al.. ADNAzyme-based colorimetric paper sensor for Helicobacter pylori [J]. Angew. Chem. Int. Edit., 2019, 58(29): 9907-9911. |
33 | ALI M M, SILVA R, WHITE D, et al.. A lateral flow test for Staphylococcus aureus in nasal mucus using a new DNAzyme as the recognition element[J/OL]. Angew. Chem. Int. Ed. Engl., 2022, 61(3): e202112346[2021-11-23]. . |
34 | LIAN Y, HE F, WANG H, et al.. A new aptamer/graphene interdigitated gold electrode piezoelectric sensor for rapid and specific detection of Staphylococcus aureus [J]. Biosens. Bioelectron., 2015, 65: 314-319. |
35 | NGUYEN T T, KIM E R, GU M B. A new cognate aptamer pair-based sandwich-type electrochemical biosensor for sensitive detection of Staphylococcus aureus [J/OL]. Biosens. Bioelectron., 2022, 198: 113835[2021-11-24]. . |
36 | PANDEY R, CHANG D R, SMIEJA M, et al.. Integrating programmable DNAzymes with electrical readout for rapid and culture-free bacterial detection using a handheld platform[J]. Nat. Chem., 2021, 13(9): 895-901. |
37 | LIU J, CAO Z, LU Y. Functional nucleic acid sensors[J]. Chem.Rev., 2009, 109(5): 1948-1998. |
38 | BREAKER R R, JOYCE G F. A DNA enzyme that cleaves RNA[J]. Chemi. Biol., 1994, 1(4): 223-229. |
39 | KIM K S, HCHOI W, GONG S J, et al. Efficient target site selection for an RNA-cleaving DNAzyme through combinatorial library screening[J]. B. Korean Chem. Soc., 2006, 27(5): 657-662. |
40 | SHEN Z, WU Z, CHANG D, et al.. A catalytic DNA activated by a specific strain of bacterial pathogen[J]. Angew. Chem. Int. Edit., 2016, 55(7): 2431-2434. |
41 | ZHANG W, FENG Q, CHANG D, et al.. In vitro selection of RNA-cleaving DNAzymes for bacterial detection[J]. Methods, 2016, 106: 66-75. |
42 | GU L, YAN W, WU H, et al.. Selection of DNAzymes for sensing aquatic bacteria: vibrio anguillarum[J]. Anal. Chem., 2019, 91(12): 7887-7893. |
43 | SHANGGUAN J F, LI Y H, HE D G, et al.. A combination of positive dielectrophoresis driven on-line enrichment and aptamer-fluorescent silica nanoparticle label for rapid and sensitive detection of Staphylococcus aureus [J]. Analyst, 2015, 140(13): 4489-4497. |
44 | WANG Q Y, KANG Y J. Bioprobes based on aptamer and silica fluorescent nanoparticles for bacteria Salmonella typhimurium detection[J]. Nanoscale Res. Lett., 2016, 11(1): 1-9. |
45 | DUAN N, WU S J, ZHU C Q, et al.. Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus [J]. Anal. Chim. Acta, 2012, 723: 1-6. |
46 | WU S J, DUAN N, SHI Z, et al.. Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels[J]. Anal. Chem., 2014, 86(6): 3100-3107. |
47 | KURT H, YUCE M, HUSSAIN B, et al.. Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection[J]. Biosens. Bioelectron., 2016, 81: 280-286. |
48 | QIAN Z S, SHAN X Y, CHAI L J, et al.. A universal fluorescence sensing strategy based on biocompatible graphene quantum dots and graphene oxide for the detection of DNA[J]. Nanoscale, 2014, 6(11): 5671-5674. |
49 | ZHANG C, LAI C, ZENG G M, et al.. Nanoporous Au-based chronocoulometric aptasensor for amplified detection of Pb2+ using DNAzyme modified with Au nanoparticles[J]. Biosens. Bioelectron., 2016, 81: 61-67. |
50 | LIU D B, WANG Z, JIANG X Y. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules[J]. Nanoscale, 2011, 3(4): 1421-1433. |
51 | CHAN W C W, NIE S M. Quantum dot bioconjugates for ultrasensitive nonisotopic detection[J]. Science, 1998, 281(5385): 2016-2018. |
52 | BILAN R, FLEURY F, NABIEY I, et al.. Quantum dot surface chemistry and functionalization for cell targeting and imaging[J]. Bioconjugate Chem., 2015, 26(4): 609-624. |
53 | NANDI S, RITENBERG M, JELINEK R. Bacterial detection with amphiphilic carbon dots[J]. Analyst, 2015, 140(12): 4232-4237. |
54 | ALI M M, AGUIRRE S D, LAZIM H, et al.. Fluorogenic DNAzyme probes as bacterial indicators[J]. Angew. Chem. Int. Edit., 2011, 50(16): 3751-3754. |
55 | MEI S H J, LIU Z J, BRENNAN J D, et al.. An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling[J]. J. Am. Chem. Soc., 2003, 125(2): 412-420. |
56 | LIU Z J, MEI S H J, BRENNAN J D, et al.. Assemblage of signaling DNA enzymes with intriguing metal-ion specificities and pH dependences[J]. J. Am. Chem. Soc., 2003, 125(25): 7539-7545. |
57 | ALI M M, AGUIRRE S D, LAZIM H, et al.. Fluorogenic DNAzyme probes as bacterial indicators[J]. Angew. Chem. Int. Ed. Engl., 2011, 50(16): 3751-3754. |
58 | ZHU D, LIU B, WEI G. Two-dimensional material-based colorimetric biosensors: a review[J]. Biosensors-Basel, 2021, 11(8): 259. |
59 | VERMA M S, ROGOWSKI J L, JONES L, et al.. Colorimetric biosensing of pathogens using gold nanoparticles[J]. Biotechnol. Adv., 2015, 33(6): 666-680. |
60 | LI X M, JU H Q, DING C F, et al.. Nucleic acid biosensor for detection of hepatitis B virus using 2,9-dimethyl-1,10-phenanthroline copper complex as electrochemical indicator[J]. Anal. Chim. Acta, 2007, 582(1): 158-163. |
61 | WANG C F, SUN X Y, SU M, et al.. Electrochemical biosensors based on antibody, nucleic acid and enzyme functionalized graphene for the detection of disease-related biomolecules[J]. Analyst, 2020, 145(5): 1550-1562. |
62 | 张爱萍,唐佳妮,孟瑞锋, 等.电化学法快速检测微生物的发展现状及趋势[J]. 生物技术进展, 2011, 1(5): 342-346. |
[1] | 雷豆豆, 马润然, 王伽伯, 孔维军. 食品中农药残留的新型生物检测技术研究进展[J]. 生物技术进展, 2023, 13(1): 1-10. |
[2] | 吴一凡, 林晟豪, 许文涛. 小分子靶标的核糖开关生物传感器研究进展[J]. 生物技术进展, 2022, 12(2): 168-175. |
[3] | 胡妍, 陈玲. 基于生物膜干涉技术检测PDL1抗体与PDL1抗原的亲和力[J]. 生物技术进展, 2021, 11(6): 795-801. |
[4] | 许文涛, 杨敏, 朱龙佼, 张洋子, 李宏宇, 杜再慧, 杨文平. 功能核酸概念的内涵与外延[J]. 生物技术进展, 2021, 11(4): 446-454. |
[5] | 卢海强,焦新雅,,吴思源,王娅丽,刘璐,程书梅,张晓,苏晓峰. 数字PCR在食源性致病菌检测中的应用进展[J]. 生物技术进展, 2021, 11(3): 260-268. |
[6] | 白小莲,爱军. 生物传感器在食源性致病菌大肠杆菌O157∶H7检测中的应用进展[J]. 生物技术进展, 2021, 11(3): 269-278. |
[7] | 陈硕,高佳奇,王迪,龙艳,李亮,张晓. DNA四面体纳米结构及其在生物技术领域的应用进展[J]. 生物技术进展, 2020, 10(6): 661-667. |
[8] | 马翾,张洋子,许文涛,. 功能核酸DNA水凝胶的理化特性及应用进展[J]. 生物技术进展, 2019, 9(6): 545-553. |
[9] | 马翾,张洋子,许文涛,. 功能核酸DNA水凝胶的制备与组装[J]. 生物技术进展, 2019, 9(6): 554-562. |
[10] | 杜再慧,罗云波,朱龙佼,许文涛,. DNA特殊二级结构及其应用进展[J]. 生物技术进展, 2019, 9(6): 563-570. |
[11] | 李凯,,罗云波,,许文涛,. CRISPR-Cas生物传感器研究进展[J]. 生物技术进展, 2019, 9(6): 579-591. |
[12] | 张玉昆,,安娜,刘卫晓,宛煜嵩,金芜军,李亮,张晓. 基于表面等离子体共振和电化学联用的DNA传感器研究进展[J]. 生物技术进展, 2019, 9(6): 592-598. |
[13] | 林晟豪,杜再慧,张秀杰,黄昆仑,,刘清亮4,许文涛,. 基于环介导等温扩增技术的生物传感器研究进展[J]. 生物技术进展, 2019, 9(6): 599-610. |
[14] | 杨文平,,吴远根. 基于Fe3O4过氧化物酶活性的Cd2+和Pb2+比色传感器[J]. 生物技术进展, 2019, 9(6): 611-619. |
[15] | 粟元,李舒婷,许文涛,. 气体生物传感器的识别机制研究进展[J]. 生物技术进展, 2019, 9(6): 620-626. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部