生物技术进展 ›› 2021, Vol. 11 ›› Issue (4): 446-454.DOI: 10.19586/j.2095-2341.2021.0051
许文涛(), 杨敏, 朱龙佼, 张洋子, 李宏宇, 杜再慧, 杨文平
收稿日期:
2021-04-10
接受日期:
2021-06-22
出版日期:
2021-07-25
发布日期:
2021-08-02
作者简介:
许文涛E-mail:xuwentao@cau.edu.cn
基金资助:
Wentao XU(), Min YANG, Longjiao ZHU, Yangzi ZHANG, Hongyu LI, Zaihui DU, Wenping YANG
Received:
2021-04-10
Accepted:
2021-06-22
Online:
2021-07-25
Published:
2021-08-02
摘要:
对功能核酸概念的分析需要建立在对功能核酸研究的基础上,从内涵和外延两个方面来进行探析。从内涵来看,它是对具有特殊结构、执行特定生物功能的核酸分子的统称;从外延来看,它包括适体、核酸核酶、核糖开关、发光核酸、修饰核酸、功能核酸裁剪、核酸自组装、功能核酸纳米材料、核酸纳米酶、核酸药物、核酸补充剂以及DNA存储技术等。目前功能核酸已成功地应用于生物传感、生物成像、生物医学等诸多领域。对功能核酸这一概念进行了探讨,并尝试对其范畴、特点进行归纳总结,以期梳理和完善功能核酸的基本概念,促进该领域的进一步发展。
中图分类号:
许文涛, 杨敏, 朱龙佼, 张洋子, 李宏宇, 杜再慧, 杨文平. 功能核酸概念的内涵与外延[J]. 生物技术进展, 2021, 11(4): 446-454.
Wentao XU, Min YANG, Longjiao ZHU, Yangzi ZHANG, Hongyu LI, Zaihui DU, Wenping YANG. The Connotation and Extension of the Functional Nucleic Acid[J]. Current Biotechnology, 2021, 11(4): 446-454.
类型 | 靶物质 | 作用位点 | 作用机制 | 总结 | 参考文献 |
---|---|---|---|---|---|
siRNA | mRNA | 细胞内(细胞质) | mRNA切割 | 根据RNAi的原理,具有与序列(siRNA)同源的mRNA切割的双链RNA,单链发夹RNA(shRNA)等 | [ |
miRNA | microRNA | 细胞内(细胞质) | microRNA替代 | 双链RNA,单链发夹RNA的miRNA或其模拟物可用于增强因疾病而恶化的miRNA的功能 | [ |
反义核 苷酸 | mRNA、miRNA | 细胞内(细胞核及细胞质) | mRNA和miRNA 降解及拼接抑制 | 单链RNA/DNA,与靶mRNA和miRNA结合,引起降解或抑制,或在剪接时跳过外显子 | [ |
适体 | 蛋白质(胞外蛋白) | 细胞内(细胞核及细胞质) | 功能抑制 | 单链RNA/DNA,以与抗体/DNA相似的方式与靶蛋白结合 | [ |
寡聚核 苷酸 | 蛋白质(转录因子) | 细胞内(细胞核) | 转录抑制 | 与转录因子结合位点序列相同的双链DNA,其与受影响基因的转录因子结合以抑制靶基因 | [ |
核酸核酶 | RNA | 细胞内(细胞质) | RNA切割 | 具有酶功能的单链RNA,可结合和裂解靶RNA | [ |
CpG oligo | 蛋白质(受体) | 细胞表面 | 免疫增强 | 具有CpG基序的寡脱氧核苷酸(单链DNA) | [ |
其他 | — | — | — | 除上面列出的核酸药物外,还可以激活先天免疫的核酸药物,例如PolyI:PolyC(双链RNA)和抗原 | [ |
表1 核酸药物的类别总结
Table 1 Classification summary of nucleic acid drug
类型 | 靶物质 | 作用位点 | 作用机制 | 总结 | 参考文献 |
---|---|---|---|---|---|
siRNA | mRNA | 细胞内(细胞质) | mRNA切割 | 根据RNAi的原理,具有与序列(siRNA)同源的mRNA切割的双链RNA,单链发夹RNA(shRNA)等 | [ |
miRNA | microRNA | 细胞内(细胞质) | microRNA替代 | 双链RNA,单链发夹RNA的miRNA或其模拟物可用于增强因疾病而恶化的miRNA的功能 | [ |
反义核 苷酸 | mRNA、miRNA | 细胞内(细胞核及细胞质) | mRNA和miRNA 降解及拼接抑制 | 单链RNA/DNA,与靶mRNA和miRNA结合,引起降解或抑制,或在剪接时跳过外显子 | [ |
适体 | 蛋白质(胞外蛋白) | 细胞内(细胞核及细胞质) | 功能抑制 | 单链RNA/DNA,以与抗体/DNA相似的方式与靶蛋白结合 | [ |
寡聚核 苷酸 | 蛋白质(转录因子) | 细胞内(细胞核) | 转录抑制 | 与转录因子结合位点序列相同的双链DNA,其与受影响基因的转录因子结合以抑制靶基因 | [ |
核酸核酶 | RNA | 细胞内(细胞质) | RNA切割 | 具有酶功能的单链RNA,可结合和裂解靶RNA | [ |
CpG oligo | 蛋白质(受体) | 细胞表面 | 免疫增强 | 具有CpG基序的寡脱氧核苷酸(单链DNA) | [ |
其他 | — | — | — | 除上面列出的核酸药物外,还可以激活先天免疫的核酸药物,例如PolyI:PolyC(双链RNA)和抗原 | [ |
1 | ELLINGTON A D, SZOSTAK J W. In vitro selection of RNA molecules that bind specific ligands [J]. Nature, 1990, 346(6287): 818-822. |
2 | TUERK C, GOLD L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase [J]. Science, 1990, 249(4968): 505-510. |
3 | DARMOSTUK M, RIMPELOVA S, GBELCOVA H, et al.. Current approaches in SELEX: An update to aptamer selection technology [J]. Biotechnol. Adv., 2015, 33(6): 1141-1161. |
4 | ABABNEH N, ALSHAER W, ALLOZI O, et al.. In vitro selection of modified RNA aptamers against CD44 cancer stem cell marker [J]. Nucl. Acid Ther., 2013, 23(6): 401-407. |
5 | BOSHTAM M, ASGARY S, KOUHPAYEH S, et al.. Aptamers against pro- and anti-inflammatory cytokines: a review [J]. Inflammation, 2017, 40(1): 340-349. |
6 | YERRAMILLI V S, KIM K H. Labeling RNAs in live cells using malachite green aptamer scaffolds as fluorescent probes [J]. ACS Synth. Biol., 2018, 7(3): 758-766. |
7 | WANG J, WANG Y, HU X, et al.. Dual-aptamer-conjugated molecular modulator for detecting bioactive metal ions and inhibiting metal-mediated protein aggregation [J]. Anal. Chem., 2019, 91(1): 823-829. |
8 | YAN A C, LEVY M. Aptamer-mediated delivery and cell-targeting aptamers: room for improvement [J]. Nucl. Acid Ther., 2018, 28(3): 194-199. |
9 | ABDELRASOUL G N, ANWAR A, MACKAY S, et al.. DNA aptamer-based non-faradaic impedance biosensor for detecting E. coli [J]. Anal. Chim. Acta, 2020, 1107: 135-144. |
10 | ZHANG Y, LAI B S, JUHAS M. Recent advances in aptamer discovery and applications [J]. Molecules, 2019, 24(5): 941-962. |
11 | ACHENBACH J, CHIUMAN W, CRUZ R, et al.. DNAzymes: from creation in vitro to application in vivo [J]. Curr. Pharm. Biotechnol., 2004, 5(4): 321-336. |
12 | ZAOURI N, CUI Z, PEINETTI A S, et al.. DNAzyme-based biosensor as a rapid and accurate verification tool to complement simultaneous enzyme-based media for E. coli detection [J]. Environ. Sci. Water Res. Technol., 2019, 5(12): 2260-2268. |
13 | ROTHENBROKER M, MCCONNELL E M, GU J, et al.. Selection and characterization of an RNA‐cleaving DNAzyme activated by legionella pneumophila [J]. Angew. Chem., 2021, 133(9): 4832-4838. |
14 | ZHANG S, LUAN Y, XIONG M, et al.. DNAzyme amplified aptasensing platform for ochratoxin A detection using a personal glucose meter [J]. ACS Appl. Mater. Interf., 2021, 13(8): 9472-9481. |
15 | NAHVI A, SUDARSAN N, EBERT M S, et al.. Genetic control by a metabolite binding mRNA [J]. Chem. Biol., 2002, 9(9): 1043-1049. |
16 | 沃森J D, 贝克T A,贝尔S P. 基因的分子生物学 [M]. 杨焕明译. 北京:科学出版社,2009. |
17 | 冯婧娴, 王佳稳, 林俊生, 等. 核酶核糖开关在基因治疗中的应用及挑战 [J]. 药学学报, 2014, 11: 1504-1511. |
18 | 毕茹茹, 范文廷, 马萍, 等. 核糖开关在细菌耐药性中的应用进展 [J]. 临床与病理杂志, 2016, 09(9): 1445-1449. |
19 | BEISEL C L, SMOLKE C D, ARKIN A P. Design principles for riboswitch function [J/OL]. PLoS Comp. Biol., 2009, 5(4): e1000363[2021-07-09]. . |
20 | 刘湛军, 路新枝, 姜鹏, 等. 核糖开关——药物开发的新靶点 [J]. 武汉大学学报(理学版), 2010, 56(3): 313-319. |
21 | 韩祥东, 刘薇, 吴存祥, 等. 核糖开关与基因表达调控 [J]. 中国生物化学与分子生物学报, 2011, 27(12): 1094-1100. |
22 | WANG X X, ZHU L J, LI S T, et al.. Fluorescent functional nucleic acid: principles, properties and applications in bioanalyzing [J]. Trac. Trend Anal. Chem., 2021, 116292-116325. |
23 | ZHOU Z, DING Y, SI S, et al.. Wide-field determination of aqueous mercury(II) based on tail-extensible DNA fluorescent probe with tunable dynamic range [J]. J. Hazard. Mater., 2021, 417:125975-125982. |
24 | TAN X, CONSTANTIN T P, SLOANE K L, et al.. Fluoromodules consisting of a promiscuous RNA aptamer and red or blue fluorogenic cyanine dyes: selection, characterization, and bioimaging [J]. J. Am. Chem. Soc., 2017, 139(26): 9001-9009. |
25 | DAVID P, CARDWELL L N, TAWIAH K D, et al.. Modular cell-internalizing aptamer nanostructure enables targeted delivery of large functional RNAs in cancer cell lines [J]. Nat. Commun., 2018, 9(1): 2283-2295. |
26 | LORENZ C, HADWIGER P, JOHN M, et al.. Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells [J]. Bioorg. Med. Chem. Lett., 2004, 14(19): 4975-4977. |
27 | NAIR J K, ATTARWALA H, SEHGAL A, et al.. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates [J]. Nucl. Acids Res., 2017, 45(19): 10969-10977. |
28 | WAN W B, SETH P P. The medicinal chemistry of therapeutic oligonucleotides [J]. J. Med. Chem., 2016, 59(21): 9645-9667. |
29 | CHEN Z, LIU C, CAO F, et al.. DNA metallization: principles, methods, structures, and applications [J]. Chem. Soc. Rev., 2018, 47(11): 4017-4072. |
30 | YANG C, POHL R, TICHY M, et al.. Synthesis, photophysical properties, and biological profiling of benzothieno-fused 7-deazapurine ribonucleosides [J]. J. Org. Chem., 2020, 85(12): 8085-8101. |
31 | BING T, YANG X J, MEI H C, et al.. Conservative secondary structure motif of streptavidin-binding aptamers generated by different laboratories [J]. Bioorgan. Med. Chem., 2010, 18(5): 1798-1805. |
32 | PADLAN C S, MALASHKEVICH V N, ALMO S C, et al.. An RNA aptamer possessing a novel monovalent cation-mediated fold inhibits lysozyme catalysis by inhibiting the binding of long natural substrates [J]. RNA, 2014, 20(4): 447-461. |
33 | XIAO X N, ZHU L J, HE W C, et al.. Functional nucleic acids tailoring and its application [J]. Trac. Trend Anal. Chem., 2019, 118: 138-157. |
34 | LI M X, XU C H, ZHANG N, et al.. Exploration of the kinetics of toehold-mediated strand displacement via plasmon rulers [J]. ACS Nano, 2018, 12(4): 3341-3350. |
35 | WU C, CANSIZ S, ZHANG L, et al.. A nonenzymatic hairpin DNA cascade reaction provides high signal gain of mRNA imaging inside live cells [J]. J. Am. Chem. Soc., 2015, 137(15): 4900-4903. |
36 | YIN P, CHOI H M, CALVERT C R, et al.. Programming biomolecular self-assembly pathways [J]. Nature, 2008, 451(7176): 318-322. |
37 | RINKER S, KE Y, LIU Y, et al.. Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding [J]. Nat. Nanotechnol., 2008, 3(7): 418-422. |
38 | SEEMAN N C. Nucleic acid junctions and lattices [J]. J. Theor. Biol., 1982, 99(2): 237-247. |
39 | SEEMAN N C. DNA Nanotechnology: from the pub to information-based chemistry [J]. Methods Mol. Biol., 2018, 1811:1-9. |
40 | HU Y, NIEMEYER C M. From DNA nanotechnology to material systems engineering [J]. Adv. Mater., 2019, 31(26): e1806294[2021-07-09]. . |
41 | VYBORNYI M, VYBORNA Y, HANER R. DNA-inspired oligomers: from oligophosphates to functional materials [J]. Chem. Soc. Rev., 2019, 48(16): 4347-4360. |
42 | PINHEIRO A V, HAN D R, SHIH W M, et al.. Challenges and opportunities for structural DNA nanotechnology [J]. Nat. Nanotechnol., 2011, 6(12): 763-772. |
43 | KIM J, JANG D, PARK H, et al.. Functional-DNA-driven dynamic nanoconstructs for biomolecule capture and drug delivery [J]. Adv. Mater., 2018, 30(45): e1707351[2021-07-09]. . |
44 | XU X, WANG L, LI K, et al.. A smart DNA tweezer for detection of human telomerase activity [J]. Anal. Chem., 2018, 90(5): 3521-3530. |
45 | YURKE B, TURBERFIELD A J, MILLS A P, et al.. A DNA-fuelled molecular machine made of DNA [J]. Nature, 2000, 406(6796): 605-608. |
46 | ZHANG J, WANG L L, HOU M F, et al.. A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNA walkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction [J]. Biosens. Bioelect., 2018, 102: 33-40. |
47 | JUNG C, ALLEN P B, ELLINGTON A D. A simple, cleated DNA walker that hangs on to surfaces [J]. ACS Nano, 2017, 11(8): 8047-8054. |
48 | XUAN F, FAN T W, HSING I M. Electrochemical interrogation of kinetically-controlled dendritic DNA/PNA assembly for immobilization-free and enzyme-free nucleic acids sensing [J]. ACS Nano, 2015, 9(5): 5027-5033. |
49 | ANG Y S, YUNG L Y. Engineering self-contained DNA circuit for proximity recognition and localized signal amplification of target biomolecules [J]. Nucl. Acids Res., 2014, 42(14): 9523-9530. |
50 | XU W, HE W, DU Z, et al.. Functional nucleic acids‐nanomaterials: development, properties, and applications [J]. Angew. Chem. Intern. Edit., 2019, 60(13): 6890-6918. |
51 | 马翾, 张洋子, 许文涛. 功能核酸DNA水凝胶的制备与组装 [J]. 生物技术进展, 2019, 9(6): 554-562. |
52 | 马翾, 张洋子, 许文涛. 功能核酸DNA水凝胶的理化特性及应用进展 [J]. 生物技术进展, 2019, 9(6): 545-553. |
53 | ZHANG Y, ZHU L, TIAN J, et al.. Smart and functionalized development of nucleic acid-based hydrogels: assembly strategies, recent advances and challenges [J]. Adv. Sci., 2021, 2100216: 1-28. |
54 | LIU J. DNA-stabilized, fluorescent, metal nanoclusters for biosensor development [J]. Trends Anal. Chem., 2014, 58: 99-111. |
55 | XU J, ZHU X, ZHOU X, et al.. Recent advances in the bioanalytical and biomedical applications of DNA-templated silver nanoclusters [J]. Trends Anal. Chem., 2020, 124: 115786-115800. |
56 | SATYAVOLU N S R, LOH K Y, TAN L H, et al.. Discovery of and Insights into DNA "Codes" for Tunable Morphologies of Metal Nanoparticles [J]. Small, 2019, 15(26): e1900975[2021-07-12].. |
57 | O'NEILL P R, YOUNG K, SCHIFFELS D, et al.. Few-atom fluorescent silver clusters assemble at programmed sites on DNA nanotubes [J]. Nano Lett., 2012, 12(11): 5464-5469. |
58 | SU Y, CHU H, TIAN J, et al.. Insight into the nanomaterials enhancement mechanism of nucleic acid amplification reactions [J]. Trends Anal. Chem., 2021, 137: 116221-116237. |
59 | ZHOU W, FANG Y, REN J, et al.. DNA-templated silver and silver-based bimetallic clusters with remarkable and sequence-related catalytic activity toward 4-nitrophenol reduction [J]. Chem. Commun., 2019, 55(3): 373-376. |
60 | LU C, TANG L, GAO F, et al.. DNA-encoded bimetallic Au-Pt dumbbell nanozyme for high-performance detection and eradication of Escherichia coli O157:H7 [J]. Biosens. Bioelectr., 2021, 187: 113327-113336. |
61 | CHEN W, FANG X, YE X, et al.. Colorimetric DNA assay by exploiting the DNA-controlled peroxidase mimicking activity of mesoporous silica loaded with platinum nanoparticles [J]. Microchim. Acta, 2018, 185(12): 1-10. |
62 | A H M, WANG L, LI Y, et al.. Guanosine-rich aptamers Cu2O nanoparticles: enhanced peroxidase activity and specific recognition capability at neutral pH [J]. Chem. Commun., 2021,57, 643-646. |
63 | MENG Y, CHEN Y, ZHU J, et al.. Polarity control of DNA adsorption enabling the surface functionalization of CuO nanozymes for targeted tumor therapy [J]. Mater. Horizons, 2021, 8(3): 972-986. |
64 | BREAKER R R, JOYCE G F. The expanding view of RNA and DNA function [J]. Chem. Biol., 2014, 21(9): 1059-1065. |
65 | ZOU Y, SUN X, WANG Y, et al.. Single siRNA nanocapsules for effective siRNA brain delivery and glioblastoma treatment [J]. Adv. Mater., 2020, 32(24): e2000416[2021-07-12].. |
66 | CHAKRABORTY C, SHARMA A R, SHARMA G, et al.. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine [J]. Mol. Ther. Nucl. Acids, 2017, 8: 132-143. |
67 | LI D, MASTAGLIA F L, FLETCHER S, et al.. Precision medicine through antisense oligonucleotide-mediated exon skipping [J]. Trends Pharmacol. Sci., 2018, 39(11): 982-994. |
68 | JAIN S, KAUR J, PRASAD S, et al.. Nucleic acid therapeutics: a focus on the development of aptamers [J]. Expert Opin. Drug Discov., 2021, 16(3): 255-274. |
69 | MAHJOUBIN-TEHRAN M, REZAEI S, ATKIN S L, et al.. Decoys as potential therapeutic tools for diabetes [J/OL]. Drug Discov. Today, 2021, doi:10.1016/j.drudis.2021.04.004[2021-07-09]. . |
70 | KHAN A U, LAL S K. Ribozymes: a modern tool in medicine [J]. J. Biomed. Sci., 2003, 10(5): 457-467. |
71 | REPP L, RASOULIANBOROUJENI M, LEE H J, et al.. Acyl and oligo(lactic acid) prodrugs for PEG-b-PLA and PEG-b-PCL nano-assemblies for injection [J]. Offic. J. Contr. Release Soc., 2021, 330: 1004-1015. |
72 | CHARLEBOIS R, ALLARD B, ALLARD D, et al.. PolyI:C and CpG synergize with anti-ErbB2 mAb for treatment of breast tumors resistant to immune checkpoint inhibitors [J]. Cancer Res., 2017, 77(2): 312-319. |
73 | WRAIGHT C J, WHITE P J. Antisense oligonucleotides in cutaneous therapy [J]. Pharmacol. Therap., 2001, 90(1): 89-104. |
74 | CAVAGNARI B M. Gene therapy: nucleic acids as drugs. Action mechanisms and delivery into the cell] [J]. Archiv. Argent. Pediat., 2011, 109(3): 237-244. |
75 | 梁兴国, 李佥, 黄丽丽, 等. 核酸代谢与营养研究及发展趋势 [J]. 中国海洋大学学报(自然科学版), 2019, 10: 64-78. |
76 | KUBOTA A. Nutritional study of nucleotide components in the milk [J]. Nihon Shonika Gakkai Zasshi Acta Paed. Japon., 1969, 73(2):197-209. |
77 | EUN-HEE D, CHRISTOPHE C, SCHWAB C, et al.. Effect of dietary nucleosides and yeast extracts on composition and metabolic activity of infant gut microbiota in PolyFermS colonic fermentation models [J]. Fems Microbiol. Ecol., 2017,97(8):8[2021-07-12].. |
78 | XU M, LIANG R, GUO Q, et al.. Dietary nucleotides extend the life span in Sprague-Dawley rats[J]. J. Nutr. Health Aging, 2013, 17(3): 223-229. |
79 | OACUTE, PEZ-NAVARRO A T, GIL A, et al., Age-related effect of dietary nucleotides on liver nucleic acid content in rats [J]. Ann. Nutr. Metab., 1997, 41(5): 324-330. |
80 | CAI X, BAO L, WANG N, et al.. Dietary nucleotides protect against alcoholic liver injury by attenuating inflammation and regulating gut microbiota in rats [J]. Food Function, 2016, 7(6): 2898-2908. |
81 | CEZE L, NIVALA J, STRAUSS K. Molecular digital data storage using DNA[J]. Nat. Rev. Genet., 2019, 20: 456-466. |
82 | ORGANICK L, ANG S D, CHEN Y J, et al.. Random access in large-scale DNA data storage [J]. Nat. Biotechnol., 2018, 36(3): 242-250. |
83 | HECKEL R, MIKUTIS G, GRASS R N. A characterization of the DNA data storage channel [J]. Sci. Rep., 2019, 9(1): 1-12. |
84 | FARZADFARD F. DNA storage in everyday objects [J]. Nat. Biotechnol.,2020,38: 31-32. |
85 | LIM C K, NIRANTAR S, YEW W S,et al.. Novel modalities in DNA data storage[J/OL]. Trends Biotechnol., 2021,doi:10.1016/j.tibtech.2020.12.008[2021-07-09]. . |
86 | BANAL J L, SHEPHERD T R, BERLEANT J, et al.. Random access DNA memory using Boolean search in an archival file storage system[J/OL]. Nat. Mater, 2021,doi: 10.1038/s41563-021-01021-3[2021-07-09]. . |
[1] | 赵文卓, 李成勋, 胡作建, 余红秀. 功能核酸用于致病菌检测的研究进展[J]. 生物技术进展, 2023, 13(1): 30-38. |
[2] | 陈可仁, 汪未申, 朱龙佼, 张洋子, 贺晓云, 黄昆仑, 许文涛. 核酸自组装纳米递送载体的研究进展[J]. 生物技术进展, 2022, 12(3): 352-357. |
[3] | 格日乐其木格, 牛振峰, 董丹, 张涛涛, 峥嵘. CRISPR-Cas系统在微生物研究中的应用进展[J]. 生物技术进展, 2021, 11(3): 253-259. |
[4] | 刘旺, 靳晶豪, 陈孝仁. 环介导等温扩增技术的应用进展[J]. 生物技术进展, 2021, 11(2): 128-135. |
[5] | 杨佳怡,陈桂芳,高运华,王志栋,吴枭. HPV核酸检测标准物质研究进展[J]. 生物技术进展, 2020, 10(6): 590-596. |
[6] | 胡思宏,游国叶. 数字PCR在新型冠状病毒检测中的应用前景[J]. 生物技术进展, 2020, 10(6): 674-679. |
[7] | 任雯,杨海侠,陈立柱,李雨峰,刘亚. 核酸层析法转基因快速检测体系的建立及应用[J]. 生物技术进展, 2020, 10(6): 680-687. |
[8] | 徐蕾,肖桂清,盛晓菁,戚智青,刁勇. PCR增强剂在核酸体外扩增检测技术的研究进展[J]. 生物技术进展, 2020, 10(2): 137-143. |
[9] | 马翾,张洋子,许文涛,. 功能核酸DNA水凝胶的理化特性及应用进展[J]. 生物技术进展, 2019, 9(6): 545-553. |
[10] | 马翾,张洋子,许文涛,. 功能核酸DNA水凝胶的制备与组装[J]. 生物技术进展, 2019, 9(6): 554-562. |
[11] | 杨文平,,吴远根. 基于Fe3O4过氧化物酶活性的Cd2+和Pb2+比色传感器[J]. 生物技术进展, 2019, 9(6): 611-619. |
[12] | 粟元,李舒婷,许文涛,. 气体生物传感器的应用研究进展[J]. 生物技术进展, 2019, 9(6): 627-632. |
[13] | 黄义,张维,燕永亮. 细菌RNA稳定性调控相关元件的研究进展[J]. 生物技术进展, 2018, 8(5): 376-382. |
[14] | 彭志,陈刚毅,刘雪飞,黄新河. 等温核酸扩增技术在病原体检测中的应用[J]. 生物技术进展, 2018, 8(4): 284-292. |
[15] | 何海旺,许春燕,李文,何龙飞,李创珍,韦善清. 玻璃粉吸附核酸及其在植物核酸提取中应用的研究[J]. 生物技术进展, 2012, 2(5): 359-365. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部