1 |
KAMBUROVA V S, NIKITINA E V, SHERMATOV S E, et al.. Genome editing in plants: an overview of tools and applications [J/OL]. Int. J. Agron., 2017:7315351[2021-06-17]. .
|
2 |
JINEK M, CHYLINSKI K, FONFARA I, et al.. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
|
3 |
ABUDAYYEH O O, GOOTENBERG J S, KONERMANN S, et al.. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J/OL]. Science, 2016, 353(6299):aaf5573[2021-06-17]. . DOI:10.1126/science.aaf5573 .
|
4 |
HSU P D, LANDER E S, ZHANG F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6):1262-1278.
|
5 |
HILLE F, RICHTER H, WONG S P, et al.. The biology of CRISPR-Cas: backward and forward[J]. Cell, 2018, 172(6):1239-1259.
|
6 |
CHYLINSKI K, MAKAROVA K S, CHARPENTIER E, et al.. Classification and evolution of type II CRISPR-Cas systems[J]. Nucl. Acids Res., 2014, 42(10):6091-6105.
|
7 |
SHMAKOV S, ABUDAYYEH O O, MAKAROVA K S, et al.. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems[J]. Mol. Cell, 2015, 60(3):385-397.
|
8 |
EAST-SELETSKY A, O'CONNELL M R, KNIGHT S C, et al.. Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection[J]. Nature, 2016, 538(7624):270-273.
|
9 |
PARDEE K, GREEN A, TAKAHASHI M, et al.. Rapid, low-cost detection of Zika virus using programmable biomolecular components[J]. Cell, 2016, 165(5):1255-1266.
|
10 |
ZHOU W, HU L, YING L, et al.. A CRISPR-Cas9-triggered strand displacement amplification method for ultrasensitive DNA detection[J/OL]. Nat. Commun., 2018, 9:5012[2021-06-17]. .
|
11 |
HUANG M, ZHOU X, WANG H, et al.. Clustered regularly interspaced short palindromic repeats/Cas9 triggered isothermal amplification for site-specific nucleic acid detection[J]. Anal. Chem., 2018, 90(3):2193-2200.
|
12 |
HAJIAN R, BALDERSTON S, TRAN T, et al.. Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor[J]. Nat. Biomed. Eng., 2019, 3(6):427-437.
|
13 |
GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al.. Nucleic acid detection with CRISPR-Cas13a/C2c2 [J]. Science, 2017, 356(6336):438-442.
|
14 |
GOOTENBERG J S, ABUDAYYEH O O, KELLNER M J, et al.. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6[J]. Science, 2018, 360(6387):439-444.
|
15 |
MYHRVOLD C, FREIJE C A, GOOTENBERG J S, et al.. Field-deployable viral diagnostics using CRISPR-Cas13[J]. Science, 2018, 360(6387):444-448.
|
16 |
JOUNG J, LADHA A, SAITO M, et al.. Detection of SARS-CoV-2 with SHERLOCK one-pot testing[J]. New Engl. J. Med., 2020, 383(15):1492-1494.
|
17 |
MUSTAFA M I, MAKHAWI A M. SHERLOCK and DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases[J]. J. Clin. Microbiol., 2021, 59(3):720-745.
|
18 |
ZETSCHE B, GOOTENBERG J S, ABUDAYYEH O O, et al.. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3):759-771.
|
19 |
CHEN J S, MA E, HARRINGTON L B, et al.. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387):436-439.
|
20 |
LI S Y, CHENG Q X, WANG J M, et al.. CRISPR-Cas12a-assisted nucleic acid detection[J/OL]. Cell Discov., 2018, 4:20[2021-06-17]. .
|
21 |
LI L, LI S, WU N, et al.. HOLMESv2: a CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation[J]. ACS Synth. Biol., 2019, 8(10):2228-2237.
|
22 |
BROUGHTON J P, DENG X, YU G, et al.. CRISPR-Cas12-based detection of SARS-CoV-2[J]. Nat. Biotechnol., 2020, 38(7):870-874.
|
23 |
HARRINGTON L B, BURSTEIN D, CHEN J S, et al.. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416):839-842.
|
24 |
国际农业生物技术应用服务组织. 2019年全球生物技术/转基因作物商业化发展态势[J]. 中国生物工程杂志, 2021, 41(1):114-119.
|
25 |
王根平, 杜文明, 夏兰琴. 植物安全转基因技术研究现状与展望[J]. 中国农业科学, 2014, 47(5):823-843.
|
26 |
郭斌, 祁洋, 尉亚辉. 转基因植物检测技术的研究进展[J] . 中国生物工程杂志, 2010, 30(2):120-126.
|
27 |
QUERCI M, BULCKE M V D, ZEL J, et al.. New approaches in GMOdetection[J]. Anal. Bioanal. Chem., 2010, 396(6):1991-2002.
|
28 |
邓汉超, 尹长城, 刘国振, 等. 转基因植物核酸成分检测技术研究进展[J]. 中国生物工程杂志, 2011, 31(1):86-95.
|
29 |
NOTOMI T, OKAYAMA H, MASUBUSHI H, et al.. Loop-mediated isothermal amplification of DNA[J/OL]. Nucl. Acids Res., 2000, 28(12):E63[2021-06-17]. . DOI: 10.1093/nar/28.12.e63 .
|
30 |
SALISU I B, SHAHID A A, YAQOOB A, et al.. Molecular approaches for high throughput detection and quantification of genetically modified crops: a review[J/OL]. Front. Plant Sci., 2017, 8:1670[2021-06-17]. .
|
31 |
王颢潜, 陈锐, 李夏莹, 等. 转基因产品成分检测技术研究进展[J]. 生物技术通报, 2018, 34(3):31-38.
|
32 |
LI R, WANG C, JI L L, et al.. Loop-mediated isothermal amplification (LAMP) assay for GMO on: recent progresses and future perspectives[J/OL]. OALib J., 2015, 2: e1264[2021-06-17]. .
|
33 |
WU H, HE J, ZHANG F, et al.. Contamination-free visual detection of CaMV35S promoter amplicon using CRISPR/Cas12a coupled with a designed reaction vessel: rapid, specific and sensitive[J]. Anal. Chim. Acta, 2020, 1096:130-137.
|
34 |
ZHANG Y, ZHANG Y, XIE K. Evaluation of CRISPR/Cas12a-based DNA detection for fast pathogen diagnosis and GMO test in rice[J/OL]. Mol. Breed., 2020, 40:11[2021-06-17]. .
|
35 |
GOOTENBERG J S, ABUDAYYEH O O, LEE J W, et al.. Nucleic acid detection with CRISPR-Cas13a/C2c2[J]. Science, 2017, 356(6336):438-442.
|
36 |
GAO L, COX D B T, YAN W X, et al.. Engineered Cpf1 variants with altered PAM specificities[J]. Nat. Biotechnol., 2017, 35(8):789-792.
|
37 |
KLEINSTIVER B P, SOUSA A A, WALTON R T, et al.. Engineered CRISPR-Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing[J]. Nat. Biotechnol., 2019, 37(3):276-282.
|
38 |
TENG F, GUO L, CUI T, et al.. CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity[J/OL]. Genome Biol., 2019, 20:132[2021-06-17]. .
|
39 |
BERENSMEIER S. Magnetic particles for the separation and purification of nucleic acids[J]. Appl. Microbiol. Biotechnol., 2006, 73(3):495-504.
|