生物技术进展 ›› 2025, Vol. 15 ›› Issue (2): 226-233.DOI: 10.19586/j.2095-2341.2025.0011
• 进展评述 • 上一篇
收稿日期:
2025-02-11
接受日期:
2025-02-28
出版日期:
2025-03-25
发布日期:
2025-04-29
通讯作者:
武建强
作者简介:
乌格叶木日 E-mail: 15947057516@163.com;
基金资助:
Received:
2025-02-11
Accepted:
2025-02-28
Online:
2025-03-25
Published:
2025-04-29
Contact:
Jianqiang WU
摘要:
恶性肿瘤是全球公共卫生领域的重大挑战,严重威胁着人类健康。尽管现代医学在肿瘤治疗方面取得了显著进展,但新型抗肿瘤药物的研发仍面临高成本、长周期及可及性问题,尤其在经济欠发达地区更为突出。因此,探索价格低廉且高效的抗肿瘤药物具有重要意义。结晶紫(gentian violet, GV)是一种传统的三芳基甲烷染料,早期被广泛用于组织染色、抗菌和抗真菌治疗。近年来,研究发现GV具有显著的抗肿瘤活性,其作用机制涉及多条细胞信号通路。此外,GV在多种肿瘤类型中均表现出抑制作用,包括淋巴瘤、肝癌、黑色素瘤、乳腺癌、卵巢癌、结肠癌及胶质瘤等。GV因其低耐药性、低毒性、低成本及药物监管要求较少等优势,成为“老药新用”策略下具有潜在应用价值的抗肿瘤药物。总结了GV的抗肿瘤作用及其潜在机制,重点介绍了其对T细胞淋巴瘤、黑色素瘤、肝癌、乳腺癌、卵巢癌、胶质瘤等多种肿瘤的抑制作用及可能的分子机制,以期为未来的基础机制研究和临床应用提供科学依据。
中图分类号:
乌格叶木日, 武建强. 结晶紫的抗肿瘤作用[J]. 生物技术进展, 2025, 15(2): 226-233.
Geyemuri WU, Jianqiang WU. Anti-tumor Effects of Gentian Violet[J]. Current Biotechnology, 2025, 15(2): 226-233.
1 | FATMA H, SIDDIQUE H R. Research and patents status of selected phytochemicals against cancer: how close and how far?[J]. Recent Pat. Anticancer Drug Discov., 2023, 18(4): 428-447. |
2 | DIORI KARIDIO I, SANLIER S H. Reviewing cancer's biology: an eclectic approach[J/OL]. J. Egypt. Natl. Canc. Inst., 2021, 33(1): 32[2025-01-02]. . |
3 | WU J, WOOD G S. Analysis of the effect of gentian violet on apoptosis and proliferation in cutaneous T-cell lymphoma in an in vitro study[J]. JAMA Dermatol., 2018, 154(10): 1191-1198. |
4 | CHEN J, ZHAO F, YANG H, et al.. Gentian violet induces apoptosis and ferroptosis via modulating p53 and MDM2 in hepatocellular carcinoma[J]. Am. J. Cancer Res., 2022, 12(7): 3357-3372. |
5 | PIETROBONO S, MORANDI A, GAGLIARDI S, et al.. Down-regulation of SOX2 underlies the inhibitory effects of the triphenylmethane gentian violet on melanoma cell self-renewal and survival[J]. J. Invest. Dermatol., 2016, 136(10): 2059-2069. |
6 | YAMAGUCHI M, VIKULINA T, WEITZMANN M N. Gentian violet inhibits MDA-MB-231 human breast cancer cell proliferation, and reverses the stimulation of osteoclastogenesis and suppression of osteoblast activity induced by cancer cells[J]. Oncol. Rep., 2015, 34(4): 2156-2162. |
7 | CHOI M S, KIM J H, LEE C Y, et al.. Gentian violet inhibits cell proliferation through induction of apoptosis in ovarian cancer cells[J/OL]. Biomedicines, 2023, 11(6): 1657[2025-01-02]. . |
8 | GARUFI A, D'ORAZI V, ARBISER J L, et al.. Gentian violet induces wtp53 transactivation in cancer cells[J]. Int. J. Oncol., 2014, 44(4): 1084-1090. |
9 | WESTERGAARD S A, LECHOWICZ M J, HARRINGTON M, et al.. Induction of remission in a patient with end-stage cutaneous T-cell lymphoma by concurrent use of radiation therapy, gentian violet, and mogamulizumab[J]. JAAD Case Rep., 2020, 6(8): 761-765. |
10 | ARBISER J L. Gentian violet is safe[J/OL]. J. Am. Acad. Dermatol., 2009, 61(2): 359[2025-01-02]. . |
11 | PRABHA N, ARORA R D, GANGULY S, et al.. Gentian violet: revisited[J]. Indian J. Dermatol. Venereol. Leprol., 2020, 86(5): 600-603. |
12 | DHAKAL S, BAGALE G, NEPAL A, et al.. Comparison of recovery rate of otomycosis using one-percent gentian violet and one-percent clotrimazole topical treatment[J]. J. Nepal Health Res. Counc., 2024, 22(2): 269-273. |
13 | O'TOOLE G A. Classic spotlight: how the gram stain works[J/OL]. J. Bacteriol., 2016, 198(23): 3128[2025-01-02]. . |
14 | DOCAMPO R, MORENO S N. The metabolism and mode of action of gentian violet[J]. Drug Metab. Rev., 1990, 22(2-3): 161-178. |
15 | BERRIOS R L, ARBISER J L. Effectiveness of gentian violet and similar products commonly used to treat pyodermas[J]. Dermatol. Clin., 2011, 29(1): 69-73. |
16 | FARID K J, KELLY K, ROSHIN S. Gentian violet 1% solution in the treatment of wounds in the geriatric patient: a retrospective study[J]. Geriatr. Nurs., 2011, 32(2): 85-95. |
17 | MALEY A M, ARBISER J L. Gentian violet: a 19th century drug re-emerges in the 21st century[J]. Exp. Dermatol., 2013, 22(12): 775-780. |
18 | TITFORD M. George grubler and karl hollborn: two founders of the biological stain industry[J]. J. Histotechnol., 1993, 16(2): 155-158. |
19 | BALABANOVA M, POPOVA L, TCHIPEVA R. Dyes in dermatology [J]. Clin. Dermatol., 2003, 21(1): 2-6. |
20 | CHURCHMAN J W. The selective bactericidal action of gentian violet[J]. J. Exp. Med., 1912, 16(2): 221-247. |
21 | HINTON D. Results of the intravenous use of gentian violet in cases of extreme septicaemia[J]. Ann. Surg., 1925, 81(3): 687-692. |
22 | SEBALD H A. Vincent's infection of the mouth[J]. Dent. Surv., 1948, 24: 45-47. |
23 | UTTER A R. Gentian violet treatment for thrush: can its use cause breastfeeding problems?[J]. J. Hum. Lact., 1990, 6(4): 178-180. |
24 | BUMBALO T S, GUSTINA F J. The treatment of pinworm infection (enterobiasis) with gentian violet suspension[J]. J. Pediatr., 1955, 47(3): 311-314. |
25 | MILLER M J, CHOQUETTE L, AUDET W, et al.. Studies on pinworm infection: 2. tests with gentian violet in the treatment of pinworm infection[J]. Can. Med. Assoc. J., 1940, 43(5): 455-458. |
26 | THOMPSON C W. Topical application of penicillin: solution, gentian-violet and heat in the treatment of extensive 1st and 2nd degree burns in children[J]. J. Natl. Med. Assoc., 1946, 38(1): 11-14. |
27 | WARNECKE W. Treatment of enterobiasis Vermicularis with gentian violet[J]. Med. Klin., 1950, 45(3): 737-739. |
28 | WRIGHT S C, MAREE J E, SIBANYONI M. Treatment of oral thrush in HIV/AIDS patients with lemon juice and lemon grass (Cymbopogon citratus) and gentian violet[J]. Phytomedicine, 2009, 16(2-3): 118-124. |
29 | ARBISER J L. Gentian violet: bench-to-bedside research that lowers healthcare costs[J]. Skinmed, 2016, 14(2): 91-92. |
30 | LIU J, TANG N, LIU N, et al.. Echinacoside inhibits the proliferation, migration, invasion and angiogenesis of ovarian cancer cells through PI3K/AKT pathway[J]. J. Mol. Histol., 2022, 53(2): 493-502. |
31 | LIN R, PIAO M, SONG Y, et al.. Quercetin suppresses AOM/DSS-induced colon carcinogenesis through its anti-inflammation effects in mice[J/OL]. J. Immunol. Res., 2020, 2020: 9242601[2025-01-02]. . |
32 | BHANDARKAR S S, MACKELFRESH J, FRIED L, et al.. Targeted therapy of oral hairy leukoplakia with gentian violet[J]. J. Am. Acad. Dermatol., 2008, 58(4): 711-712. |
33 | COOI L, WATANABE N, FUTAMURA Y, et al.. Identification of small molecule inhibitors of p27(Kip1) ubiquitination by high-throughput screening[J]. Cancer Sci., 2013, 104(11): 1461-1467. |
34 | DOBOS G, MILADI M, MICHEL L, et al.. Recent advances on cutaneous lymphoma epidemiology[J/OL]. Presse Med., 2022, 51(1): 104108[2025-01-02]. . |
35 | GOEL R R, ROOK A H. Immunobiology and treatment of cutaneous T-cell lymphoma[J]. Expert Rev. Clin. Immunol., 2024, 20(8): 985-996. |
36 | RAO S, MORRIS R, RICE Z P, et al.. Regression of diffuse B-cell lymphoma of the leg with intralesional gentian violet[J]. Exp. Dermatol., 2018, 27(1): 93-95. |
37 | 王姣姣,耿圆圆,张家耀,等.肝细胞癌循环肿瘤细胞标志物及检测方法研究进展[J].生物技术进展,2015,5(2):113-119. |
WANG J J, GENG Y Y, ZHANG J Y, et al.. Progress for biomarkers and detection methods of circulating tumor cell of hepatocellular carcinoma[J]. Curr. Biotechnol., 2015, 5(2): 113-119. | |
38 | ARBISER J L, BIPS M, SEIDLER A, et al.. Combination therapy of imiquimod and gentian violet for cutaneous melanoma metastases[J]. J. Am. Acad. Dermatol., 2012, 67(2): e81-3. |
39 | 张鹏晓,胡念.黑色素瘤免疫治疗作用机制研究进展[J].生物技术进展,2023,13(6):900-906. |
ZHANG P X, HU N. The research progress on action mechanism of melanoma immunotherapy[J]. Curr. Biotechnol., 2023, 13(6): 900-906. | |
40 | 赵轩,任丽梅,王晓茹,等.siRNA靶向干扰TRAF6的表达对肺癌细胞增殖与凋亡的影响[J].生物技术进展,2024,14(5):875-881. |
ZHAO X, REN L M, WANG X R, et al.. Effects of siRNA targeting to interfere with the expression of TRAF6 on the proliferation and apoptosis of lung cancer cells[J]. Curr. Biotechnol., 2024, 14(5): 875-881. | |
41 | LONG G V, SWETTER S M, MENZIES A M, et al.. Cutaneous melanoma[J]. Lancet, 2023, 402(10400): 485-502. |
42 | RIBEIRO M B A J, DOS SANTOS G I, EVANGELISTA DOS S A C, et al.. Molecular landscape of hereditary melanoma[J/OL]. Crit. Rev. Oncol. Hematol., 2021, 164: 103425[2025-01-02]. . |
43 | ZHANG X, LIU R, YUAN Q, et al.. The precise diagnosis of cancer invasion/metastasis via 2D laser ablation mass mapping of metalloproteinase in primary cancer tissue[J]. ACS Nano, 2018, 12(11): 11139-11151. |
44 | 车逸宁, 李冕, 王晓, 等. ITGA7基因与人类肿瘤的泛癌分析 [J]. 生物技术进展, 2025, 15(1): 142-151. |
CHE YN, LI M, WANG X, et al.. Pan cancer analysis between ITGA7 gene and human tumors[J]. Curr. Biotechnol., 2025, 15(1): 142-151. | |
45 | WILKINSON L, GATHANI T. Understanding breast cancer as a global health concern[J/OL]. Br. J. Radiol., 2022, 95(1130): 20211033[2025-01-02]. . |
46 | 孙莉莉,安外尔·约麦尔阿卜拉,刘富中,等.基于肿瘤相关成纤维细胞基因构建乳腺癌预后预测模型及免疫浸润分析[J].生物技术进展,2024,14(2):312-322. |
SUN L L, ANWAIER Y, LIU F, , et al.. Construction of prognostic prediction model of breast cancer based on tumor-associated fibroblast genes and analysis of immune infiltration[J]. Curr. Biotechnol., 2024, 14(2): 312-322. | |
47 | YAMAGUCHI M, MURATA T. Potential suppressive effects of gentian violet on human breast cancer MDA-MB-231 cells in vitro: Comparison with gemcitabine[J]. Oncol. Lett., 2016, 12(2): 1605-1609. |
48 | MUKAWERA E, CHARTIER S, WILLIAMS V, et al.. Redox-modulating agents target NOX2-dependent IKKε oncogenic kinase expression and proliferation in human breast cancer cell lines[J]. Redox Biol., 2015, 6: 9-18. |
49 | 杜琳琳,谢飞,马雪梅.SALL4的促癌功能及治疗意义[J].生物技术进展,2023,13(5):704-711. |
DU L L, XIE F, MA X M. Pro-oncogenic function and therapeutic significance of SALL4[J]. Curr. Biotechnol., 2023, 13(5): 704-711. | |
50 | CHANDRA A, PIUS C, NABEEL M, et al.. Ovarian cancer: current status and strategies for improving therapeutic outcomes[J]. Cancer Med., 2019, 8(16): 7018-7031. |
51 | BAIDOUN F, ELSHIWY K, ELKERAIE Y, et al.. Colorectal cancer epidemiology: recent trends and impact on outcomes[J]. Curr. Drug Targets, 2021, 22(9): 998-1009. |
52 | 杨梦恬,袁菊懋.RTN4对于结肠癌细胞增殖的调控作用[J].生物技术进展,2021,11(2):238-243. |
YANG M T, YUAN J M. The regulation effect of RTN4 on colon cancer cell proliferation[J]. Curr. Biotechnol., 2021, 11(2): 238-243. | |
53 | ADZAVON Y M, 刘梦昱, 王惠, 等. 替莫唑胺治疗胶质母细胞瘤的耐药性产生机制研究进展 [J]. 生物技术进展, 2021, 11(6): 705-710. |
ADZAVON Y M, LIU M Y, WANG H, et al.. Research progress of temozolomide in the mechanism of drug resistance in glioblastoma[J]. Curr. Biotechnol., 2021, 11(6): 705-710. | |
54 | 成于思, 胡钧涛, 胡胜利,等. CRISPR/Cas9敲除pyk2基因对人脑胶质瘤细胞增殖、迁移及侵袭能力的影响 [J]. 生物技术进展, 2017, 7(4): 338-344. |
CHENG Y S, HU J T, HU S L, et al.. Effects of pyk2 knockout on the proliferation, migration and invasion of human glioma cell line by CRISPR/Cas9[J]. Curr. Biotechnol., 2017, 7(4): 338-344. | |
55 | KLEIN A P. Pancreatic cancer epidemiology: understanding the role of lifestyle and inherited risk factors[J]. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(7): 493-502. |
56 | THAI A A, SOLOMON B J, SEQUIST L V, et al.. Lung cancer[J]. Lancet, 2021, 398(10299): 535-554. |
57 | 房俊伟, 冯添顺, 洪伟煊, 等. 基于衰老相关基因特征的胰腺癌风险分层及预后预测模型 [J]. 生物技术进展, 2025, 15(1): 158-169. |
FANG J W, FENG T S, HONG W X, et al.. Pancreatic cancer risk stratification and prognostic prediction model based on aging-related gene characteristics[J]. Curr. Biotechnol., 2025, 15(1): 158-169. | |
58 | WANG Y Y, XIAO L Y, WU P C, et al.. Orabase-formulated gentian violet effectively improved oral potentially malignant disorder in vitro and in vivo [J/OL]. Biochem. Pharmacol., 2020, 171: 113713[2025-01-02]. . |
59 | SORS A, JEAN-LOUIS F, PELLET C, et al.. Down-regulating constitutive activation of the NF-kappaB canonical pathway overcomes the resistance of cutaneous T-cell lymphoma to apoptosis[J]. Blood, 2006, 107(6): 2354-2363. |
60 | SORS A, JEAN-LOUIS F, BÉGUÉ E, et al.. Inhibition of IkappaB kinase subunit 2 in cutaneous T-cell lymphoma down-regulates nuclear factor-kappaB constitutive activation, induces cell death, and potentiates the apoptotic response to antineoplastic chemotherapeutic agents[J]. Clin. Cancer Res., 2008, 14(3): 901-911. |
61 | CLEERE R, LONG A, KELLEHER D, et al.. Autocrine regulation of the transcription factor NF kappa B by TNF alpha in the human T cell lymphoma line Hut 78[J/OL]. Biochem. Soc. Trans., 1995, 23(1): 113S[2025-01-02]. . |
62 | O'CONNELL M A, CLEERE R, LONG A, et al.. Cellular proliferation and activation of NF kappa B are induced by autocrine production of tumor necrosis factor alpha in the human T lymphoma line HuT 78[J]. J. Biol. Chem., 1995, 270(13): 7399-7404. |
63 | IZBAN K F, ERGIN M, QIN J Z, et al.. Constitutive expression of NF-kappa B is a characteristic feature of mycosis fungoides: implications for apoptosis resistance and pathogenesis[J]. Hum. Pathol., 2000, 31(12): 1482-1490. |
64 | GIRI D K, AGGARWAL B B. Constitutive activation of NF-kappaB causes resistance to apoptosis in human cutaneous T cell lymphoma HuT-78 cells. Autocrine role of tumor necrosis factor and reactive oxygen intermediates[J]. J. Biol. Chem., 1998, 273(22): 14008-14014. |
65 | LI J, CAO F, YIN H L, et al.. Ferroptosis: past, present and future[J/OL]. Cell Death Dis., 2020, 11(2): 88[2025-01-02]. . |
66 | DONADEL G, GARZELLI C, FRANK R, et al.. Identification of a novel nuclear protein synthesized in growth-arrested human hepatoblastoma HepG2 cells[J]. Eur. J. Biochem., 1991, 195(3): 723-729. |
67 | GABRIELLI F, DONADEL G, BENSI G, et al.. A nuclear protein, synthesized in growth-arrested human hepatoblastoma cells, is a novel member of the short-chain alcohol dehydrogenase family[J]. Eur. J. Biochem., 1995, 232(2): 473-477. |
68 | DEISENROTH C, THORNER A R, ENOMOTO T, et al.. Mitochondrial Hep27 is a c-Myb target gene that inhibits Mdm2 and stabilizes p53[J]. Mol. Cell. Biol., 2010, 30(16): 3981-3993. |
69 | YAMAGUCHI M, VIKULINA T, ARBISER J L, et al.. Suppression of NF-κB activation by gentian violet promotes osteoblastogenesis and suppresses osteoclastogenesis[J]. Curr. Mol. Med., 2014, 14(6): 783-792. |
70 | KOPP B, KHOURY L, AUDEBERT M. Validation of the γH2AX biomarker for genotoxicity assessment: a review[J]. Arch. Toxicol., 2019, 93(8): 2103-2114. |
[1] | 孙恺婧, 刘馨泽, 金鑫, 杨雪, 王琦, 李玉, 陈长宝, 万茜淋. 暴马桑黄的抗肿瘤活性成分及其作用机制研究进展[J]. 生物技术进展, 2024, 14(6): 929-936. |
[2] | 李蓓蓓, 武建强. 肿瘤细胞中FAS介导的非凋亡信号通路研究进展[J]. 生物技术进展, 2024, 14(3): 406-412. |
[3] | 曾艳, 祝恒成, 杨康. 脱氧核糖核酸酶1在肾细胞癌中的作用及机制研究[J]. 生物技术进展, 2024, 14(3): 486-491. |
[4] | 梁一鹏, 王迪, 宋昊泽, 石莉红, 佟静媛. 生物信息学分析鉴定骨髓增殖性肿瘤发生发展的免疫调控因子[J]. 生物技术进展, 2024, 14(3): 492-500. |
[5] | 布尔兰·叶尔肯别克, 郭文佳, 董晓刚. 骨膜蛋白在肿瘤微环境中的作用研究进展[J]. 生物技术进展, 2024, 14(2): 205-210. |
[6] | 赵维坚, 徐弘庭, 肖向茜, 盛望. 肿瘤干细胞中的Hippo信号通路研究进展[J]. 生物技术进展, 2024, 14(2): 211-220. |
[7] | 孙莉莉, 安外尔·约麦尔阿卜拉, 刘富中, 布尔兰·叶尔肯别克, 迪丽娜尔·叶尔夏提, 郭文佳. 基于肿瘤相关成纤维细胞基因构建乳腺癌预后预测模型及免疫浸润分析[J]. 生物技术进展, 2024, 14(2): 312-322. |
[8] | 张鹏晓, 胡念. 黑色素瘤免疫治疗作用机制研究进展[J]. 生物技术进展, 2023, 13(6): 900-906. |
[9] | 安外尔·约麦尔阿卜拉, 孙莉莉, 布尔兰·叶尔肯别克, 郭文佳. Piezo1在癌症中的作用研究进展[J]. 生物技术进展, 2023, 13(5): 712-717. |
[10] | 马文博, 潘逸群, 王群, 马壮, 王明连, 杨怡姝. 烯壳氮化铁纳米磁珠用于捕获肺癌循环肿瘤细胞的初步研究[J]. 生物技术进展, 2023, 13(4): 628-636. |
[11] | 李永超, 杨昭. 双特异抗体药物研发现状及发展对策[J]. 生物技术进展, 2023, 13(3): 353-358. |
[12] | 高朗, 于思雪, 袁春森, 单志伟, 赵鹏翔. 黏蛋白在肿瘤免疫治疗中的研究进展[J]. 生物技术进展, 2023, 13(3): 390-398. |
[13] | 唐颖, 武建强. 肉苁蓉苯乙醇苷的抗肿瘤作用[J]. 生物技术进展, 2023, 13(3): 399-405. |
[14] | 董立强, 王斌, 苏适, 刘东琦. 雷公藤红素抗肿瘤作用及机制研究进展[J]. 生物技术进展, 2023, 13(1): 77-82. |
[15] | 陈小巧, 牧仁, 李玉玲. 脐带间充质干细胞的生物学特性及旁分泌作用的研究进展[J]. 生物技术进展, 2022, 12(4): 559-567. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部