生物技术进展 ›› 2024, Vol. 14 ›› Issue (3): 492-500.DOI: 10.19586/j.2095-2341.2023.0160

• 研究论文 • 上一篇    

生物信息学分析鉴定骨髓增殖性肿瘤发生发展的免疫调控因子

梁一鹏1,2(), 王迪1,2, 宋昊泽1,2, 石莉红1,2(), 佟静媛1,2()   

  1. 1.中国医学科学院血液病医院(中国医学科学院血液学研究所)北京协和医学院,血液与健康全国重点实验室,国家血液系统疾病临床医学研究中心,天津市血液病细胞治疗研究重点实验室,细胞生态海河实验室,天津 300020
    2.天津医学健康研究院,天津 301600
  • 收稿日期:2023-12-12 接受日期:2024-02-27 出版日期:2024-05-25 发布日期:2024-06-18
  • 通讯作者: 石莉红,佟静媛
  • 作者简介:梁一鹏 E-mail: liangyipeng@ihcams.ac.cn
  • 基金资助:
    国家自然科学基金项目(82100152);中国医学科学院医学与健康科技创新工程项目(2021-12M-1-073)

Identification of Immunoregulatory Factors in the Development of Myeloproliferative Neoplasms by Bioinformatics

Yipeng LIANG1,2(), Di WANG1,2, Haoze SONG1,2, Lihong SHI1,2(), Jingyuan TONG1,2()   

  1. 1.State Key Laboratory of Experimental Hematology,National Clinical Research Center for Blood Diseases,Tianjin Key Laboratory of Cell Therapy for Blood Diseases,Haihe Laboratory of Cell Ecosystem,Institute of Hematology & Blood Diseases Hospital,Chinese Academy of Medical Sciences & Peking Union Medical College,Tianjin 300020,China
    2.Tianjin Institutes of Health Science,Tianjin 301600,China
  • Received:2023-12-12 Accepted:2024-02-27 Online:2024-05-25 Published:2024-06-18
  • Contact: Lihong SHI,Jingyuan TONG

摘要:

骨髓增殖性肿瘤是一组由造血干细胞异质性增殖引起的疾病,主要包括真红细胞增多症、原发性血小板增多症和原发性骨髓纤维化。在骨髓增殖性肿瘤患者和小鼠模型中都表现出炎症反应紊乱,而过度的炎症反应会推进骨髓增殖性肿瘤的发生和进展。深入研究骨髓增殖性肿瘤的免疫炎症机理,对其控制有着至关重要的意义。从基因表达综合数据库中寻找合适的骨髓增殖性肿瘤的基因表达谱芯片(GSE174060),其中骨髓增殖性肿瘤患者有50个,正常供者有15个。利用limma分析,筛选获得1 269个差异表达基因(|log2FC|≥0.5,P.adj<0.05),包括810个上调基因和459个下调基因。随后将差异基因与免疫相关基因集取交集获得了128个免疫相关基因,包括108个上调基因和20个下调基因。基因功能注释分析发现这些基因主要富集在免疫应答、趋化、白细胞介素信号传导、中性粒细胞脱颗粒、适应性免疫等通路。蛋白互作网络分析中,首先利用Cytoscape软件构建这些基因的重要模块,主要包括2个重要模块,模块一包括11个节点(node)和62个连接(edge),模块二包括9个节点和36个连接;然后通过Cytohubba插件确定了10个免疫相关关键HUB基因(IL1BJAK2CXCL10ICAM1CX3CR1TLR4MMP9CD4CCR1LYN)。利用GSE103237数据集对这10个基因进行基因表达分析,发现其中7个基因在骨髓增殖性肿瘤组中表达上调,验证了HUB基因的重要性。综上,研究结果有助于发现骨髓增殖性肿瘤中重要的免疫炎症因子,为肿瘤治疗提供一定的策略和依据。

关键词: 骨髓增殖性肿瘤, 免疫相关HUB基因, 慢性炎症

Abstract:

Myeloproliferative neoplasms (MPN) represent a group of chronic myeloproliferative disorders initiated by the hyperproliferation of hematopoietic stem cells, giving rise to conditions such as polycythemia vera, essential thrombocythemia, and primary myelofibrosis. In both afflicted patients and murine models, the inflammatory response exhibits dysregulation, and an undue inflammatory reaction serves to foster the initiation and progression of myeloproliferative tumors. A comprehensive exploration of the immunoinflammatory mechanisms in MPN is essential for the advancement of its treatment. To investigate the mechanism, we utilized gene expression profiling microarrays (accession number GSE174060) retrieved from the Gene Expression omnibus database, including 50 patients with myeloproliferative tumor and 15 normal donors. Using limma analysis, 1 269 differentially expressed genes (DEGs) were identified (|log2FC|≥0.5 and P.adjust<0.05), including 810 up-regulated genes and 459 down-regulated genes. We subsequently identified 128 immune-related genes, comprising 108 up-regulated genes and 20 down-regulated genes. This selection was made by intersecting the set of differentially expressed genes with the set of immune-related genes. Notably, these genes were predominantly enriched in signaling pathways associated with the inflammatory response and chemotaxis, as established through gene function annotation analysis. To gain insights into the interplay of these immune-related genes, we utilized Cytoscape software to construct protein interaction networks. This analysis uncovered two prominent modules: Module 1, comprising 11 nodes and 62 edges, and Module 2, consisting of 9 nodes and 36 edges. Additionally, we identified 10 critical immune-related HUB genes (IL1B, JAK2, CXCL10, ICAM1, CX3CR1, TLR4, MMP9, CD4, CCR1, LYN) using the Cytohubba plugin. The research further validated the importance of these HUB genes through gene expression analysis using the GSE103237 dataset. In conclusion, this study contributes to the identification of pivotal immune-inflammatory factors in MPN and enhances the understanding of the molecular mechanisms driving inflammation in MPN, providing a foundation for developing targeted strategies and treatment approaches for MPN.

Key words: myeloproliferative neoplasms, immune-related HUB genes, chronic inflammation

中图分类号: