1 |
FERRARI P, SCATENA C, GHILLI M, et al.. Molecular mechanisms, biomarkers and emerging therapies for chemotherapy resistant TNBC[J/OL]. Int. J. Mol. Sci., 2022, 23(3): 1665[2023-12-14]. .
|
2 |
ECHEVERRIA G V, GE Z, SETH S, et al.. Resistance to neoadjuvant chemotherapy in triple-negative breast cancer mediated by a reversible drug-tolerant state[J/OL]. Sci. Transl. Med., 2019, 11(488): eaav0936[2023-12-13]. .
|
3 |
PATEL KK, HASSAN D, NAIR S, et al.. Role of immunotherapy in the treatment of triple-negative breast cancer: a literature review[J/OL]. Cureus, 2022, 14(11): e31729[2023-12-14]. .
|
4 |
AKINLEYE A, RASOOL Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics[J/OL]. J. Hematol. Oncol., 2019, 12(1): 92[2023-12-14]. .
|
5 |
CILIBRASI C, DITSIOU A, PAPAKYRIAKOU A, et al.. LMTK3 inhibition affects microtubule stability[J/OL]. Mol. Cancer, 2021, 20(1): 53[2023-12-14]. .
|
6 |
CAPASSO A, LANG J, PITTS T M, et al.. Characterization of immune responses to anti-PD-1 mono and combination immunotherapy in hematopoietic humanized mice implanted with tumor xenografts[J/OL]. J. Immunother. Cancer, 2019, 7(1): 37[2023-12-14]. .
|
7 |
SCHMID P, ADAMS S, RUGO H S, et al.. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer[J]. N. Engl. J. Med., 2018, 379(22): 2108-2121.
|
8 |
CHEN X, LI A, SUN B F, et al.. 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs[J]. Nat. Cell Biol., 2019, 21(8): 978-990.
|
9 |
HU Y, CHEN C, TONG X, et al.. NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation[J/OL]. Cell Death Dis., 2021, 12(9): 842[2023-12-14]. .
|
10 |
CHEN Y S, YANG W L, ZHAO Y L, et al.. Dynamic transcriptomic m5C and its regulatory role in RNA processing[J/OL]. Wiley Interdiscip. Rev. RNA, 2021, 12(4): e1639[2023-12-14]. .
|
11 |
YU X, ZHANG Q, GAO F, et al.. Predictive value of m5C regulatory gene expression in pancreatic adenocarcinoma[J/OL]. Sci. Rep., 2021, 11(1): 17529[2023-12-14]. .
|
12 |
PAN J, HUANG Z, XU Y. m5C-related lncRNAs predict overall survival of patients and regulate the tumor immune microenvironment in lung adenocarcinoma[J/OL]. Front. Cell Dev. Biol., 2021, 9: 671821[2023-12-14]. .
|
13 |
CHEN W, ZHENG R, BAADE P D, et al.. Cancer statistics in China, 2015[J]. CA Cancer J. Clin., 2016, 66(2): 115-132.
|
14 |
SIKOV W M, BERRY D A, PEROU C M, et al.. Impact of the addition of carboplatin and/or bevacizumab to neoadjuvant once-per-week paclitaxel followed by dose-dense doxorubicin and cyclophosphamide on pathologic complete response rates in stage Ⅱ to Ⅲ triple-negative breast cancer: CALGB 40603 (Alliance)[J]. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol., 2015, 33(1): 13-21.
|
15 |
ZHAO Z, LI Y, LIU H, et al.. Co-delivery of IKBKE siRNA and cabazitaxel by hybrid nano complex inhibits invasiveness and growth of triple-negative breast cancer[J/OL]. Sci. Adv., 2020, 6(29): eabb0616[2023-12-14]. .
|
16 |
NI Y, SCHMIDT K R, WERNER B A, et al.. Death effector domain-containing protein induces vulnerability to cell cycle inhibition in triple-negative breast cancer[J/OL]. Nat. Commun., 2019, 10(1): 2860[2023-12-14]. .
|
17 |
XU J, SUN J, HO P Y, et al.. Creatine based polymer for codelivery of bioengineered microRNA and chemodrugs against breast cancer lung metastasis[J]. Biomaterials, 2019, 210: 25-40.
|
18 |
TANG Y, CHEN K, WU X, et al.. DRUM: inference of disease-associated m(6)a RNA methylation sites from a multi-layer heterogeneous network[J/OL]. Front. Genet., 2019, 10: 266[2023-12-14]. .
|
19 |
TIAN J, YING P, KE J, et al.. ANKLE1 N6-methyladenosine-related variant is associated with colorectal cancer risk by maintaining the genomic stability[J]. Int. J. Cancer, 2020, 146(12): 3281-3293.
|
20 |
MONGAN N P, EMES R D, ARCHER N. Detection and analysis of RNA methylation[J/OL]. F1000Research, 2019, 8: 559[2023-12-14]..
|
21 |
TRAUBE F R, CARELL T. The chemistries and consequences of DNA and RNA methylation and demethylation[J]. RNA Biol., 2017, 14(9): 1099-1107.
|
22 |
LI H, LU T, SUN W, et al.. Ten-eleven translocation (TET) enzymes modulate the activation of dendritic cells in allergic rhinitis[J/OL]. Front. Immunol., 2019, 10: 2271[2023-12-14]. .
|
23 |
SCHOELER K, AUFSCHNAITER A, MESSNER S, et al.. TET enzymes control antibody production and shape the mutational landscape in germinal centre B cells[J]. FEBS J., 2019, 286(18): 3566-3581.
|