1 |
MARTIN B, DEWITT P E, RUSSELL S, et al.. Acute upper airway disease in children with the Omicron (B.1.1.529) variant of SARS-CoV-2-A report from the US national COVID cohort collaborative[J/OL]. JAMA Pediatr., 2022: e221110[2022-4-15]. .
|
2 |
CHAIYAKULSIL C, SRITIPSUKHO P, SATDHABUDHA A, et al.. An epidemiological study of pediatric COVID-19 in the era of the variant of concern[J/OL]. PLoS ONE, 2022, 17(4): e0267035[2022-4-15]. .
|
3 |
杨镇州, 李妍, 杨雪, 等. 新型冠状病毒核酸检测试剂盒中酶的性能比较研究[J]. 生物技术进展, 2021, 11(6): 777-782.
|
4 |
BEERAKA N M, SUKOCHEVA O A, LUKINA E, et al.. Development of antibody resistance in emerging mutant strains of SARS CoV-2: Impediment for COVID-19 vaccines[J/OL]. Rev. Med. Virol., 2022, 13: e2346[2022-4-13]. .
|
5 |
MCLEAN G, KAMIL J, LEE B, et al.. The impact of evolving SARS-CoV-2 mutations and variants on COVID-19 vaccines[J/OL]. mBio, 2022, 13(2): e0297921[2022-4-26]. .
|
6 |
ZHANG C, FENG Y G, TAM C, et al.. Transcriptional profiling and machine learning unveil a concordant biosignature of Type I interferon-inducible host response across nasal swab and pulmonary tissue for COVID-19 diagnosis[J/OL]. Front Immunol., 2021, 12: 733171[2021-11-22]. .
|
7 |
ZHANG L, LI M, WANG Z, et al.. Cardiovascular risk after SARS-CoV-2 infection is mediated by IL18/IL18R1/HIF-1 signaling pathway axis[J/OL]. Front Immunol., 2022, 12: 780804[2022-1-5]. .
|
8 |
ARUNACHALAM P S, WIMMERS F, MOK C K P, et al.. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans[J]. Science, 2020, 369(6508): 1210-1220.
|
9 |
LOVE M I, HUBER W, ANDERS S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J/OL]. Genome Biol., 2014, 15(12): 550[2022-1-5]. .
|
10 |
LANGFELDER P, HORVATH S. WGCNA: an R package for weighted correlation network analysis[J/OL]. BMC Bioinform., 9:559[2008-12-29]. .
|
11 |
WU T, HU E, XU S, et al.. ClusterProfiler 4.0: A universal enrichment tool for interpreting omics data[J/OL]. Innovation (Camb), 2021, 2(3): 100141[2021-7-1]. .
|
12 |
NEWMAN A M, LIU C L, GREEN M R, et al.. Robust enumeration of cell subsets from tissue expression profiles[J]. Nat. Methods, 2015, 12(5): 453-457.
|
13 |
HU K. Become competent within one day in generating boxplots and violin plots for a novice without prior R experience[J/OL]. Methods Protoc., 2020, 3(4): 64[2020-9-23]. .
|
14 |
MELIDOU A, KÖDMÖN C, NAHAPETYAN K, et al.. Influenza returns with a season dominated by clade 3C.2a1b.2a.2 A(H3N2viruses), RegionWHOEuropean, 2021/22[J/OL]. Euro. Surveill., 2022, 27(15): 2200255[2022-4-14]. .
|
15 |
刘家俊, 陈琛, 温明星, 等. 基于共表达网络和蛋白互作分析挖掘小麦赤霉病抗性相关核心蛋白[J]. 生物技术进展, 2021, 11(5): 628-633.
|
16 |
WANG X, BAI H, MA J, et al.. Identification of distinct immune cell subsets associated with asymptomatic infection, disease severity, and viral persistence in COVID-19 patients[J/OL]. Front Immunol., 2022, 13: 812514[2022-2-22]. .
|
17 |
HAHN F, HAMILTON S T, WANGEN C, et al.. Development of a PROTAC-based targeting strategy provides a mechanistically unique mode of anti-cytomegalovirus activity[J/OL]. Int. J. Mol. Sci., 2021, 22(23): 12858[2021-11-27]. .
|
18 |
AGRAWAL P, SAMBATURU N, OLGUN G, et al.. A path-based analysis of infected cell line and COVID-19 patient transcriptome reveals novel potential targets and drugs against SARS-CoV-2[J/OL]. Res. Squ., 2022, rs.3.rs-1474136[2022-3-21]. .
|
19 |
KIM Y J, WITWIT H, CUBITT B, et al.. Inhibitors of anti-apoptotic Bcl-2 family proteins exhibit potent and broad-spectrum anti-mammarenavirus activity via cell cycle arrest at G0/G1 phase[J/OL]. J. Virol., 2021, 95(24): e0139921[2021-11-23]. .
|
20 |
YUKA S, YILMAZ A. Effect of SARS-CoV-2 infection on host competing endogenous RNA and miRNA network[J/OL]. PeerJ, 2021, 9: e12370[2021-10-20]. .
|
21 |
AHMED F F, REZA M S, SARKER M S, et al.. Identification of host transcriptome-guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches[J/OL]. PLoS ONE, 2022, 17(4): e0266124[2022-4-7]. .
|
22 |
CASCIOLA-ROSEN L, THIEMANN D R, ANDRADE F, et al.. IgM anti-ACE2 autoantibodies in severe COVID-19 activate complement and perturb vascular endothelial function[J/OL]. JCI Insight, 2022, 7(9): e158362[2022-5-9]. .
|
23 |
WILK A J, RUSTAGI A, ZHAO N Q, et al.. A single-cell atlas of the peripheral immune response in patients with severe COVID-19 [J]. Nat. Med., 2020, 26(7): 1070-1076.
|
24 |
KURI-CERVANTES L, PAMPENA M B, MENG W, et al.. Immunologic perturbations in severe COVID-19/SARS-CoV-2 infection[J/OL]. bioRxiv, 2020, 101717[2020-5-18]. .
|
25 |
ZHANG J J, DONG X, CAO Y Y, et al.. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China [J]. Allergy, 2020, 75(7): 1730-1741.
|
26 |
NAGASHIMA S, DUTRA A A, ARANTES M P, et al.. COVID-19 and lung mast cells: the kallikrein-kinin activation pathway[J/OL]. Int. J. Mol. Sci., 2022, 23(3): 1714[2022-2-2]. .
|
27 |
SUN Z, ZHANG Z, BANU K, et al.. Blood transcriptomes of SARS-CoV-2 infected kidney transplant recipients demonstrate immune insufficiency[J/OL]. MedRxiv, 2022: 22270203[2022-1-31]. .
|