生物技术进展 ›› 2023, Vol. 13 ›› Issue (1): 90-101.DOI: 10.19586/j.2095-2341.2022.0071
李凤梅(), 汤雪媛, 焦高洋, 齐玉亭, 杜献婷, 鲍倩倩, 张梦, 徐小博, 徐鑫, 张艳芳(
)
收稿日期:
2022-05-09
接受日期:
2022-08-01
出版日期:
2023-01-25
发布日期:
2023-02-07
通讯作者:
张艳芳
作者简介:
李凤梅 E-mail: lfm3714167@163.com;
基金资助:
Fengmei LI(), Xueyuan TANG, Gaoyang JIAO, Yuting QI, Xianting DU, Qianqian BAO, Meng ZHANG, Xiaobo XU, Xin XU, Yanfang ZHANG(
)
Received:
2022-05-09
Accepted:
2022-08-01
Online:
2023-01-25
Published:
2023-02-07
Contact:
Yanfang ZHANG
摘要:
金银花作为我国重要的中药材,具有消炎、抗菌、抗病毒、抗氧化、防癌等多种功效。随着金银花市场供需矛盾日益加剧,通过分子标记辅助选择育种方法来培育高产优质品种势在必行。通过NCBI的Blast工具扫描金银花蛋白组数据发掘花形候选基因,并执行候选基因的亲缘关系分析、结构域分析、表达模式分析、理化性质分析、蛋白质结构预测等一系列生物信息学分析。依据拟南芥调控花形的ABE类基因,通过NCBI-Blast工具扫描金银花氨基酸序列,筛选出包含MADS结构域的8个调控花形的金银花候选基因。经LjaFGD表达模式分析发现,金银花的花中GWHGAAZE016592和GWHGAAZE014905表达量显著高于其他部位,可能正向调控金银花花形。GWHGAAZE014905是一个包含MADS结构域的调控花器官发育的B类基因;GWHGAAZE016592是AP3同源基因。生物信息学分析发现,GWHGAAZE016592和GWHGAAZE014905均是稳定的亲水蛋白,属于非分泌蛋白,包括Motif1、Motif3、Motif4、Motif2、Motif6和Motif5,蛋白质三级结构模板为6byy.2.A和4ox0.2.C。GWHGAAZE014905被定位到细胞核上,而GWHGAAZE016592被定位到叶绿体上,且包含1个位于151~173 bp的跨膜螺旋区域,属于膜蛋白。研究结果为分子标记辅助选择方式培育道地高产优质金银花品种提供了基因资源和分子标记。
中图分类号:
李凤梅, 汤雪媛, 焦高洋, 齐玉亭, 杜献婷, 鲍倩倩, 张梦, 徐小博, 徐鑫, 张艳芳. 金银花花形基因的发掘及生物信息学分析[J]. 生物技术进展, 2023, 13(1): 90-101.
Fengmei LI, Xueyuan TANG, Gaoyang JIAO, Yuting QI, Xianting DU, Qianqian BAO, Meng ZHANG, Xiaobo XU, Xin XU, Yanfang ZHANG. Identification and Analysis of Genes Controlling Flower Shape in Lonicerajaponica Thunb.[J]. Current Biotechnology, 2023, 13(1): 90-101.
类型 | 调控部位 | 基因 |
---|---|---|
其他调控花器官大小的因子 | ARGOS、OSR1、ANT、AILS、KLU、GRFs、GIFs、SWP、ARL、MED8、BB、DA1、DAR1、TCP4、MED25、BPEp/ARF8等 | |
A类基因 | 花瓣、萼片 | AP1、AGL79、AP2、CLF、CAL、LUG、FUL、AGL79等 |
B类基因 | 花瓣、雄蕊 | PI、APETALA3(AP3)、NAP、PIS、B类基因表达相关基因(LFY、UFO)等 |
E类基因 | 花瓣 | SEP1、SEP2、SEP3、SEP4、AGL3等 |
表1 拟南芥ABCDE模型相关基因
Table 1 Genes related to ABCDE model in Arabidopsis
类型 | 调控部位 | 基因 |
---|---|---|
其他调控花器官大小的因子 | ARGOS、OSR1、ANT、AILS、KLU、GRFs、GIFs、SWP、ARL、MED8、BB、DA1、DAR1、TCP4、MED25、BPEp/ARF8等 | |
A类基因 | 花瓣、萼片 | AP1、AGL79、AP2、CLF、CAL、LUG、FUL、AGL79等 |
B类基因 | 花瓣、雄蕊 | PI、APETALA3(AP3)、NAP、PIS、B类基因表达相关基因(LFY、UFO)等 |
E类基因 | 花瓣 | SEP1、SEP2、SEP3、SEP4、AGL3等 |
基因名称 (蛋白名称) | 染色体 | 位置 | 编码区 CDS | 正(+)反(-)向 | 结构域 | 拟南芥同源基因 (同一性) | |
---|---|---|---|---|---|---|---|
同 一 基 因 簇 | GWHGAAZE001422 (GWHPAAZE001424) | 1 | 37616176~37616658 | 37616176~37616658 | - | MADS(1~61), low complexity(101~114), coiled coil(129~160) | AP1(40.000), AP3(34.177), SEP3(34.343) |
GWHGAAZE001424 (GWHPAAZE001426) | 1 | 37773949~37774431 | 37773949~37774431 | - | MADS(1~61), coiled coil(89~160), | AP1(38.667), AP3(34.177), SEP3(32.653), SEP4(47.158) | |
同一基因簇 | GWHGAAZE003600 (GWHPAAZE003603) | 1 | 100741719~100742564 | 100741719~100742564 | - | MADS(1~61), coiled coil(125~156), | AP1(47.059), AP3(37.500), SEP3(54.167) |
GWHGAAZE003601 (GWHPAAZE003604) | 1 | 100748839~100749663 | 100748839~100749663 | - | MADS(1~61) | AP1(46.154), AP3(38.889), SEP3(56.250), SEP4(54.167) | |
GWHGAAZE014905 (GWHPAAZE014912) | 4 | 21322982~21326145 | 21323004~21323191, 21324258~21324324, 21324428~21324489, 21324610~21324709, 21325160~21325201, 21325317~21325361, 21325548~21325733 | + | MADS(1~60), low complexity(111~121), coiled coil(144~164) | AP1(34.659), AP3(52.913), SEP3(35.859), SEP4(38.217) | |
GWHGAAZE016592 (GWHPAAZE016602) | 4 | 79255018~79260192 | 79255018~79255245, 79255659~79255718, 79257047~79257091, 79257197~79257238, 79258143~79258317, 79258437~79258531, 79259395~79259461, 79260005~79260192 | - | MADS(1~60), coiled coil(91~122), transmembrane region(151~173) | AGL79(37.662) AP1(38.272) AP3(50.345) SEP3(43.243) | |
GWHGAAZE031567 (GWHPAAZE031586) | 9 | 61028167~61028670 | 61028167~61028670 | - | MADS(1~60), coiled coil(78~117,140~167) | AP1(42.857) AP3(26.627) SEP3(45.833) | |
GWHGAAZE032544 (GWHPAAZE032564) | 21 | 4431033~4436189 | 4435923~4436104 4434534~4434609 4434055~4434122 4433812~4433911 4432855~4432896 4432353~4432394 4432092~4432216 4431316~4431415 | - | MADS(1~60), coiled coil(154~177) | AP1(42.286) AP3(36.559) SEP3(45.349) SEP4(39.429) |
表2 金银花候选基因编码蛋白信息一览表
Table 2 Information list of candidate protein in Lonicera japonica Thunb.
基因名称 (蛋白名称) | 染色体 | 位置 | 编码区 CDS | 正(+)反(-)向 | 结构域 | 拟南芥同源基因 (同一性) | |
---|---|---|---|---|---|---|---|
同 一 基 因 簇 | GWHGAAZE001422 (GWHPAAZE001424) | 1 | 37616176~37616658 | 37616176~37616658 | - | MADS(1~61), low complexity(101~114), coiled coil(129~160) | AP1(40.000), AP3(34.177), SEP3(34.343) |
GWHGAAZE001424 (GWHPAAZE001426) | 1 | 37773949~37774431 | 37773949~37774431 | - | MADS(1~61), coiled coil(89~160), | AP1(38.667), AP3(34.177), SEP3(32.653), SEP4(47.158) | |
同一基因簇 | GWHGAAZE003600 (GWHPAAZE003603) | 1 | 100741719~100742564 | 100741719~100742564 | - | MADS(1~61), coiled coil(125~156), | AP1(47.059), AP3(37.500), SEP3(54.167) |
GWHGAAZE003601 (GWHPAAZE003604) | 1 | 100748839~100749663 | 100748839~100749663 | - | MADS(1~61) | AP1(46.154), AP3(38.889), SEP3(56.250), SEP4(54.167) | |
GWHGAAZE014905 (GWHPAAZE014912) | 4 | 21322982~21326145 | 21323004~21323191, 21324258~21324324, 21324428~21324489, 21324610~21324709, 21325160~21325201, 21325317~21325361, 21325548~21325733 | + | MADS(1~60), low complexity(111~121), coiled coil(144~164) | AP1(34.659), AP3(52.913), SEP3(35.859), SEP4(38.217) | |
GWHGAAZE016592 (GWHPAAZE016602) | 4 | 79255018~79260192 | 79255018~79255245, 79255659~79255718, 79257047~79257091, 79257197~79257238, 79258143~79258317, 79258437~79258531, 79259395~79259461, 79260005~79260192 | - | MADS(1~60), coiled coil(91~122), transmembrane region(151~173) | AGL79(37.662) AP1(38.272) AP3(50.345) SEP3(43.243) | |
GWHGAAZE031567 (GWHPAAZE031586) | 9 | 61028167~61028670 | 61028167~61028670 | - | MADS(1~60), coiled coil(78~117,140~167) | AP1(42.857) AP3(26.627) SEP3(45.833) | |
GWHGAAZE032544 (GWHPAAZE032564) | 21 | 4431033~4436189 | 4435923~4436104 4434534~4434609 4434055~4434122 4433812~4433911 4432855~4432896 4432353~4432394 4432092~4432216 4431316~4431415 | - | MADS(1~60), coiled coil(154~177) | AP1(42.286) AP3(36.559) SEP3(45.349) SEP4(39.429) |
C1498H2415N425O444S12 | ||
296 | ||
表3 花形候选基因理化性质分析
Table 3 Physical properties and chemical analysis of candidate gene for flower shape
C1498H2415N425O444S12 | ||
296 | ||
同源蛋白 | α螺旋 | 延伸链 | β转角 | 无规则卷曲 | 二级结构元件分布 |
---|---|---|---|---|---|
GWHGAAZE014905 | 56.33% | 13.10% | 8.30% | 22.27% | ![]() |
GWHGAAZE016592 | 44.26% | 20.61% | 6.42% | 28.72% | ![]() |
At AGL79 | 48.19% | 7.63% | 4.42% | 39.76% | ![]() |
AP1 | 57.65% | 7.45% | 2.75% | 32.16% | ![]() |
AP3 | 52.16% | 17.67% | 7.33% | 22.84% | ![]() |
SEP3 | 52.19% | 9.96% | 4.78% | 33.07% | ![]() |
SEP4 | 49.81% | 7.78% | 3.89% | 38.52% | ![]() |
表4 同源蛋白的二级结构特性
Table 4 Analysis of the secondary structure for candidate proteins
同源蛋白 | α螺旋 | 延伸链 | β转角 | 无规则卷曲 | 二级结构元件分布 |
---|---|---|---|---|---|
GWHGAAZE014905 | 56.33% | 13.10% | 8.30% | 22.27% | ![]() |
GWHGAAZE016592 | 44.26% | 20.61% | 6.42% | 28.72% | ![]() |
At AGL79 | 48.19% | 7.63% | 4.42% | 39.76% | ![]() |
AP1 | 57.65% | 7.45% | 2.75% | 32.16% | ![]() |
AP3 | 52.16% | 17.67% | 7.33% | 22.84% | ![]() |
SEP3 | 52.19% | 9.96% | 4.78% | 33.07% | ![]() |
SEP4 | 49.81% | 7.78% | 3.89% | 38.52% | ![]() |
同源蛋白 | 模板 | 描述 | 同一性 | 覆盖度 | 范围 | |
---|---|---|---|---|---|---|
GWHGAAZE014905 | 6byy.2.A | MEF2 CHIMERA/ MEF2 CHIMERA/DNA Complex | 42.67% | 0.33 | 2~77 | ![]() |
4ox0.2.C | Developmental protein SEPALLATA 3/ Crystal structure of the keratin-like domain from the MADS transcription factor Sepallata 3 | 29.76% | 0.37 | 86~169 | ![]() | |
GWHGAAZE016592 | 6byy.2.A | 同上 | 44.59% | 0.25 | 2~76 | ![]() |
4ox0.2.C | 同上 | 29.76% | 0.28 | 97~205 | ![]() | |
At AGL79 | 6byy.2.A | 同上 | 46.67% | 0.30 | 2~76 | ![]() |
4ox0.2.C | 同上 | 36.47% | 0.34 | 90~174 | ![]() | |
AP1 | 3kov.1.A | Myocyte-specific enhancer factor 2A/ Structure of MEF2A bound to DNA reveals a completely folded MADS-box/MEF2 domain that recognizes DNA and recruits transcription co-factors | 56.34% | 0.28 | 2~74 | ![]() |
4ox0.2.C | 同上 | 41.86% | 0.34 | 89~174 | ![]() | |
AP3 | 6byy.2.A | 同上 | 49.33% | 0.32 | 2~77 | ![]() |
3-Sep | 6byy.2.A | 同上 | 48.24% | 0.34 | 2~88 | ![]() |
4ox0.2.C | 同上 | 100.00% | 0.41 | 83~177 | ![]() | |
4-Sep | 6byy.2.A | 同上 | 53.85% | 0.30 | 2~84 | ![]() |
4ox0.2.C | 同上 | 54.65% | 0.33 | 89~174 | ![]() |
表5 蛋白质的三维结构模拟结果
Table 5 Simulated 3D structure of candidate protein
同源蛋白 | 模板 | 描述 | 同一性 | 覆盖度 | 范围 | |
---|---|---|---|---|---|---|
GWHGAAZE014905 | 6byy.2.A | MEF2 CHIMERA/ MEF2 CHIMERA/DNA Complex | 42.67% | 0.33 | 2~77 | ![]() |
4ox0.2.C | Developmental protein SEPALLATA 3/ Crystal structure of the keratin-like domain from the MADS transcription factor Sepallata 3 | 29.76% | 0.37 | 86~169 | ![]() | |
GWHGAAZE016592 | 6byy.2.A | 同上 | 44.59% | 0.25 | 2~76 | ![]() |
4ox0.2.C | 同上 | 29.76% | 0.28 | 97~205 | ![]() | |
At AGL79 | 6byy.2.A | 同上 | 46.67% | 0.30 | 2~76 | ![]() |
4ox0.2.C | 同上 | 36.47% | 0.34 | 90~174 | ![]() | |
AP1 | 3kov.1.A | Myocyte-specific enhancer factor 2A/ Structure of MEF2A bound to DNA reveals a completely folded MADS-box/MEF2 domain that recognizes DNA and recruits transcription co-factors | 56.34% | 0.28 | 2~74 | ![]() |
4ox0.2.C | 同上 | 41.86% | 0.34 | 89~174 | ![]() | |
AP3 | 6byy.2.A | 同上 | 49.33% | 0.32 | 2~77 | ![]() |
3-Sep | 6byy.2.A | 同上 | 48.24% | 0.34 | 2~88 | ![]() |
4ox0.2.C | 同上 | 100.00% | 0.41 | 83~177 | ![]() | |
4-Sep | 6byy.2.A | 同上 | 53.85% | 0.30 | 2~84 | ![]() |
4ox0.2.C | 同上 | 54.65% | 0.33 | 89~174 | ![]() |
1 | WU J, WANG X, LIU Y, et al.. Flavone synthases from Lonicera japonica and L. macranthoides reveal differential flavone accumulation[J]. Sci. Rep., 2016, 6: 1-14. |
2 | WANG D, SHU X, ZHAO X, et al.. Comparative analysis of volatile oils from Lonicera japonica Thunb. var. chinensis wakey by HS-SPME and GC-MS[J]. Asian J. Chem., 2013, 25(2): 803-806. |
3 | ZHENG Z, ZHANG Q, CHEN R, et al.. Four new N-contained iridoid glycosides from flower buds of Lonicera japonica [J]. J. Asian Nat. Prod. Res., 2012, 14(8):729-737. |
4 | LIN L, ZHANG X, ZHU J, et al.. Two new triterpenoid saponins from the flowers and buds of Lonicera japonica [J]. J. Asian Nat. Prod. Res., 2008, 10(10): 925-929. |
5 | YAN L, QIU B, LI T, et al.. Green synthesis of silver nanoparticles from Lonicera japonica leaf extract and their anti-inflammatory and antibacterial effects[J]. Micro Nano. Lett., 2020,15(2): 90-95. |
6 | BANG B, PARK D, KWON K, et al.. BST-104, a water extract of Lonicera japonica, has a gastroprotective effect via antioxidant and anti-Inflammatory activities[J]. J. Med. Food, 2019, 22(4): 433-433. |
7 | LIU M, YU Q, YI Y, et al.. Antiviral activities of Lonicera japonica Thunb. components against grouper iridovirus in vitro and in vivo[J/OL]. Aquaculture, 2020, 519: 734882[2020-3-30]. . |
8 | ZHANG T, LIU H, BAI X, et al.. Fractionation and antioxidant activities of the water-soluble polysaccharides from Lonicera japonica Thunb.[J]. Int. J. Biol. Macromol., 2020, 151: 1058-1066. |
9 | YANG J, YU X, GUO L, et al.. Study of Lonicera japonica Thunb. against lung cancer based on pharmacological network[J]. Drug Eval. Res., 2020, 43 (2): 213-220. |
10 | ZHUANG J, DAI X, WU Q, et al.. A meta-analysis for Lianhua Qingwen on the treatment of coronavirus disease 2019 (COVID-19)[J/OL]. Complement. Ther. Med., 2021, 60: 102754[2021-6-19]. . |
11 | Chinese Pharmacopoeia Commission. Pharmacopeia of the People's Republic of China (中华人民共和国药典) [S]. Beijing: China Medical Science Press, 2020: 52, 230. |
12 | 孟雨婷,黄晓晨,侯元同,等. 花的形态与花发育的ABCDE模型[J]. 生物学杂志, 2017, 34(6): 105-115. |
13 | CAUSIERA B, SCHWARZ-SOMMERB Z, DAVIESA B. Floral organ identity: 20 years of ABCs[J]. Semin. Cell Dev. Biol., 2010, 21(1): 73-79. |
14 | PU X, LI Z, TINA Y, et al.. The honeysuckle genome provides insight into the molecular mechanism of carotenoid metabolism underlying dynamic flower coloration[J]. New Phytol., 2020, 227(3): 100-102. |
15 | XIAO Q, LI Z, QU M, et al.. LjaFGD: Lonicera japonica functional genomics database[J]. Integr. Plant Biol., 2021, 63(8): 1422-1436. |
16 | 林永强. 金银花药材及其制剂质量控制技术研究[D]. 济南: 山东大学, 2019. |
17 | MONDO M, KIMANI P, NARLA R. Validation of effectiveness marker-assisted gamete selection for multiple disease resistance in common bean[J]. Afr. Crop Sci. J., 2019, 27(4): 585-612. |
18 | O'BOYLE P, KELLY J, KIRK W. Use of marker-assisted selection to breed for resistance to common bacterial blight in common bean[J]. J. Am. Soc. Hortic. Sci., 2007, 132(3): 381-386. |
19 | HE L, XU X, LI Y, et al.. Transcriptome analysis of buds and leaves using 454 pyrosequencing to discover genes associated with the biosynthesis of active ingredients in Lonicera japonica Thunb[J/OL]. PLoS ONE, 2013, 8(4): 62922[2013-04-25]. . |
20 | FAN L, CHEN L, CUI W, et al.. Analysis of heavy metal content in edible honeysuckle (Lonicera japonica Thunb.) from China and health risk assessment[J]. J. Environ. Sci. Heal. B., 2020, 55(10):921-928. |
21 | 李建军,贾国伦,王君,等. 金银花不同种质花蕾的形态和品质成分比较分析[J]. 广西师范大学学报(自然科学版), 2013, 31(4) : 103-108. |
22 | 周连霞. 拟南芥CIB3调节成花转变的分子机制研究[D]. 长春: 吉林大学, 2021. |
23 | DENNIS L, PEACOCK J. Genes directing flower development in Arabidopsis [J]. Plant Cell, 2019, 31(6): 1192-1193. |
24 | REBOCHO A, KENNAWAY J, BANGHAM J, et al.. Formation and shaping of the antirrhinum flower through modulation of the CUP boundary gene[J]. Curr. Biol., 2017, 27(17): 2610-2622. |
25 | MUROYA M, OSHIMA H, KOBAYASHI S, et al.. Circadian clock in Arabidopsis thaliana determines flower opening time early in the morning and dominantly closes early in the afternoon[J]. Plant Cell Physiol., 2021, 62(5): 883-893. |
26 | BENEDITO V, VISSER P, VAN T J, et al.. Ectopic expression of LLAG1, an AGAMOUS homologue from lily (Lilium longiflorum Thunb.) causes floral homeotic modifications in Arabidopsis [J]. J. Exp. Bot., 2004, 55(401): 1391-1399. |
27 | GREGIS V, SESSA A, DORCA-FORNELL C, et al.. The Arabidopsis floral meristem identity genes AP1, AGL24 and SVP directly repress class B and C floral homeotic genes[J]. Plant J., 2009, 60(4): 626-637. |
28 | RIECHMANN J, MEYEROWITZ E. Determination of floral organ identity by Arabidopsis MADS domain homeotic proteins AP1, AP3, PI, and AG is independent of their DNA-binding specificity[J]. Mol. Biol. Cell, 1997, 8 (7):1243-1259. |
29 | JING D, CHEN W, SHI M, et al.. Ectopic expression of an eriobotrya japonica APETALA3 ortholog rescues the petal and stamen identities in Arabidopsis ap3-3 mutant[J]. Biochem. Bioph. Res. Co., 2020, 523(1):33-38. |
30 | DITTA G, PINYOPICH A, ROBLES P, et al.. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity[J]. Curr. Biol., 2004, 14(21): 1935-1940. |
31 | FAVARO R, PINYOPICH A, BATTAGLIA R, et al.. MADS-box protein complexes control carpel and ovule development in Arabidopsis [J]. Plant Cell, 2003, 15(11):2603-2611. |
32 | 吕秀立. 栎属1考来木属等优良材料筛选和无性繁殖技术研究[D]. 南京: 南京林业大学, 2018. |
33 | FANG Z, QI R, LI X, et al.. Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3 mutant[J]. Gene, 2014, 550(2): 200-206. |
[1] | 徐石勇,赵新,张富丽,刘征辉,史清洪,宋君,王永,兰青阔. 基于焦磷酸测序分析技术的金银花掺伪鉴别方法研究[J]. 生物技术进展, 2020, 10(6): 637-645. |
[2] | 许杰,王可飞,魏晓晶,龚莉欣,焦阳,邱录贵,郝牧. 基于生物信息学分析SCHIP1在急性髓系白血病中的表达及其临床意义[J]. 生物技术进展, 2020, 10(4): 417-425. |
[3] | 张凤丽,杨雅麟,夏锐,高辰辰,李栋,冉超,张震,张洪玲,周志刚. 吉陶单极虫可分泌蛋白酶基因的克隆与生物信息学分析[J]. 生物技术进展, 2019, 9(4): 375-383. |
[4] | 徐长禄,赵艳红,马艺戈,王冰蕊,王鼎,郭青,佟静媛,高洁,李亚朴,刘金花,石莉红. 利用生物信息学方法解析自噬相关基因在人体红细胞终末分化各阶段的动态表达[J]. 生物技术进展, 2019, 9(3): 271-276. |
[5] | 姚祖杰,吴松青,彭艳,杨梅. 一株高产杀虫蛋白苏云金杆菌的生物学特性研究以及其aiiA基因的克隆和生物信息学分析[J]. 生物技术进展, 2013, 3(2): 124-131. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部