生物技术进展 ›› 2021, Vol. 11 ›› Issue (6): 724-731.DOI: 10.19586/j.2095-2341.2021.0130
周娜娜1,2,3(), 王小艳1,2,3, 张媛1,2,3, 王靖1,2,3, 赵国淼1,2,3, 魏超1,2,3, 杨凯1,2,3, 安泰1,2,3()
收稿日期:
2021-07-06
接受日期:
2021-10-08
出版日期:
2021-11-25
发布日期:
2021-11-26
通讯作者:
安泰
作者简介:
周娜娜 E-mail:zhounana@cofco.com;
基金资助:
Nana ZHOU1,2,3(), Xiaoyan WANG1,2,3, Yuan ZHANG1,2,3, Jing WANG1,2,3, Guomiao ZHAO1,2,3, Chao WEI1,2,3, Kai YANG1,2,3, Tai AN1,2,3()
Received:
2021-07-06
Accepted:
2021-10-08
Online:
2021-11-25
Published:
2021-11-26
Contact:
Tai AN
摘要:
重组蛋白药物是生物药物中的核心产品,主要是通过基因工程菌来生产功能蛋白或其突变体,用于弥补体内蛋白的缺失,从而对疾病的治疗发挥关键作用。近年来,重组蛋白药物在疾病治疗中发挥作用越来越大,相关技术也发展迅速。通过综述重组蛋白药物的中上游生产流程,并重点分析了重组蛋白药物在表达系统、细胞培养、纯化和质量控制等环节的最新技术进展,展示了重组蛋白药物制备的技术提升水平,以期为国内重组蛋白药物的生产提供一定的参考依据。
中图分类号:
周娜娜, 王小艳, 张媛, 王靖, 赵国淼, 魏超, 杨凯, 安泰. 重组蛋白药物的生产技术进展[J]. 生物技术进展, 2021, 11(6): 724-731.
Nana ZHOU, Xiaoyan WANG, Yuan ZHANG, Jing WANG, Guomiao ZHAO, Chao WEI, Kai YANG, Tai AN. Progress on the Production Technology of Recombinant Therapeutic Proteins[J]. Current Biotechnology, 2021, 11(6): 724-731.
表达系统 | 优点 | 缺点 |
---|---|---|
大肠杆菌 | 表达系统相对简单、易于操作、营养需求简单、易于遗传和发酵操作、周期短[ | 缺乏翻译后修饰机制,内毒素的存在可能会对给患者的药物产生免疫反应[ |
酵母系统 | 酿酒酵母系统:可以在无蛋白培养基中快速生长,存在翻译后修饰机制和细胞外分泌产物的能力[ | 酿酒酵母:重组蛋白过表达可能导致在细胞内积累和产量下降[ |
毕赤酵母系统:多种具有翻译后修饰功能的高表达菌株且可高密度生长[ | 毕赤酵母:在存在碳源如葡萄糖、甘油或乙醇时,启动子AOX1被强烈抑制[ | |
CHO细胞系 | 可以产生与人同源性最高的重组蛋白,保证正确的折叠与糖基化 | 需要营养更丰富的培养基,生长条件严苛,生长周期较长[ |
表1 重组药物蛋白的多种表达系统
Table 1 The different expression systems for recombinant therapeutic proteins
表达系统 | 优点 | 缺点 |
---|---|---|
大肠杆菌 | 表达系统相对简单、易于操作、营养需求简单、易于遗传和发酵操作、周期短[ | 缺乏翻译后修饰机制,内毒素的存在可能会对给患者的药物产生免疫反应[ |
酵母系统 | 酿酒酵母系统:可以在无蛋白培养基中快速生长,存在翻译后修饰机制和细胞外分泌产物的能力[ | 酿酒酵母:重组蛋白过表达可能导致在细胞内积累和产量下降[ |
毕赤酵母系统:多种具有翻译后修饰功能的高表达菌株且可高密度生长[ | 毕赤酵母:在存在碳源如葡萄糖、甘油或乙醇时,启动子AOX1被强烈抑制[ | |
CHO细胞系 | 可以产生与人同源性最高的重组蛋白,保证正确的折叠与糖基化 | 需要营养更丰富的培养基,生长条件严苛,生长周期较长[ |
宿主 | 重组蛋白药物 | 产量 | 参考文献 |
---|---|---|---|
毕赤酵母(P. pastoris) | 乙型肝炎表面B抗原 | 7 g·L-1 | [ |
人粒细胞⁃巨噬细胞集落刺激因子 | 285 mg·L-1 | [ | |
人血清蛋白 | 92.29 mg·L-1 | [ | |
酿酒酵母(S. cerevisiae) | 胰高血糖素样肽2 | — | [ |
人表皮生长因子 | 5 mg·L-1 | [ | |
解脂耶氏酵母(Yarrowia lipolytica) | 人干扰素α2a(IFNα2a) | 425 mg·L-1 | [ |
乳酸克鲁维酵母(Kluyveromyces lactis) | 人干扰素β | — | [ |
汉森酵母(Hansenula polymorpha) | HPV 16型L1‑L2嵌合蛋白(SAF) | 132.10 mg·L-1 | [ |
表2 酵母系统所表达的重组蛋白药物情况
Table 2 The recombinant therapeutic proteins expressed by yeast systems
宿主 | 重组蛋白药物 | 产量 | 参考文献 |
---|---|---|---|
毕赤酵母(P. pastoris) | 乙型肝炎表面B抗原 | 7 g·L-1 | [ |
人粒细胞⁃巨噬细胞集落刺激因子 | 285 mg·L-1 | [ | |
人血清蛋白 | 92.29 mg·L-1 | [ | |
酿酒酵母(S. cerevisiae) | 胰高血糖素样肽2 | — | [ |
人表皮生长因子 | 5 mg·L-1 | [ | |
解脂耶氏酵母(Yarrowia lipolytica) | 人干扰素α2a(IFNα2a) | 425 mg·L-1 | [ |
乳酸克鲁维酵母(Kluyveromyces lactis) | 人干扰素β | — | [ |
汉森酵母(Hansenula polymorpha) | HPV 16型L1‑L2嵌合蛋白(SAF) | 132.10 mg·L-1 | [ |
纯化方式 | 机理 | |
---|---|---|
超滤 | 目标蛋白和其他杂质基于尺寸大小而被分离 | |
单柱色谱 | 反相液相色谱(RP‑LC) | 根据分析物的疏水特性进行分离[ |
离子交换色谱(IEX) | 基于分析物的电荷与固定相之间的静电相互作用分离;可鉴定通过 RP‑LC 难以检测的肽修饰,如脱酰胺或乙酰化,能够区分具有相似疏水性的分析物[ | |
亲水相互作用色谱(HILIC) | 正相色谱的一种变体,洗脱顺序与反相色谱相反[ | |
混合模式 | 在同一固定相上结合两种配体,具备两种分离机制[ | |
多维色谱 | 连续应用两种或两种以上的混合模式色谱的组合 | |
MCSGP技术 | 与单柱色谱分离原理相同,使用两个或更多相同的色谱柱,不纯组分可在内部循环进入系统,性能参数增加[ |
表3 重组蛋白药物的不同纯化方式
Table 3 The purification methods of recombinant therapeutic proteins
纯化方式 | 机理 | |
---|---|---|
超滤 | 目标蛋白和其他杂质基于尺寸大小而被分离 | |
单柱色谱 | 反相液相色谱(RP‑LC) | 根据分析物的疏水特性进行分离[ |
离子交换色谱(IEX) | 基于分析物的电荷与固定相之间的静电相互作用分离;可鉴定通过 RP‑LC 难以检测的肽修饰,如脱酰胺或乙酰化,能够区分具有相似疏水性的分析物[ | |
亲水相互作用色谱(HILIC) | 正相色谱的一种变体,洗脱顺序与反相色谱相反[ | |
混合模式 | 在同一固定相上结合两种配体,具备两种分离机制[ | |
多维色谱 | 连续应用两种或两种以上的混合模式色谱的组合 | |
MCSGP技术 | 与单柱色谱分离原理相同,使用两个或更多相同的色谱柱,不纯组分可在内部循环进入系统,性能参数增加[ |
1 | TAO L, RAO C M. Analysis and evaluation of product-related proteins in recombinant protein therapeutics[J]. Chin. J. Pharm. Anal., 2018, 38(11) :1851-1864. |
2 | DINGMAN R, BALU-IYER S V. Immunogenicity of protein pharmaceuticals[J]. J. Pharm. Sci., 2019, 108(5):1637-1654. |
3 | MUTTENTHALER M, KING G F, ADAMS D J, et al.. Trends in peptide drug discovery[J]. Nat. Rev. Drug Discov., 2021, 20(4):309-325. |
4 | 长城产业洞见. 重组蛋白药物——可以治病的蛋白质[EB/OL]. [2021-07-24]. . |
5 | SHAHCHERAGHI S H, AYATOLLAHI J, ALJABALI A A, et al.. An overview of vaccine development for COVID-19[J]. Therap. Deliv., 2021, 12(3):235-244. |
6 | GUPTA S K, PRATYOOSH S. Sophisticated cloning, fermentation, and purification technologies for an enhanced therapeutic protein production: a review[J/OL]. Front. Pharmacol., 2017, 8:419[2021-08-20]. . |
7 | HAYAT S M G, FARAHANI N, GOLICHENARI B, et al.. Recombinant protein expression in Escherichia coli (E. coli): what we need to know[J]. Curr. Pharm. Des., 2018, 24(6):718-725. |
8 | LOBSTEIN J, EMRICH C A, JEANS C, et al.. Erratum to: shuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm[J/OL]. Microb. Cell Fact., 2016, 15(1):124[2021-08-21]. . |
9 | ROBINSON M P, KE N, LOBSTEIN J, et al.. Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria[J/OL]. Nat. Commun., 2015, 6:8072[2021-08-21]. . |
10 | KAUR J, KUMAR A, KAUR J. Strategies for optimization of heterologous protein expression in E. coli: roadblocks and reinforcements[J]. Int. J. Biol. MacromoL., 2018, 106:803-822. |
11 | DE LUCA C, LIEVORE G, BOZZA D, et al.. Downstream processing of therapeutic peptides by means of preparative liquid chromatographys[J/OL]. Molecules, 2021, 26(15):4688[2021-08-20]. . |
12 | LOOSER V, BRUHLMANN B, BUMBAK F, et al.. Cultivation strategies to enhance productivity of Pichia pastoris: a review[J]. Biotechnol. Adv., 2015, 33:1177-1193. |
13 | ROOHVAND F, EHSANI P, ABDOLLAHPOUR-ALITAPPEH M, et al.. Biomedical applications of yeasts —— a patent view, part two: era of humanized yeasts and expanded applications[J]. Expert. Opin. Ther. Pat., 2020, 30(8):609-631. |
14 | THAK E J, YOO S J, MOON H Y, et al.. Yeast synthetic biology for designed cell factories producing secretory recombinant proteins[J/OL]. FEMS Yeast Res., 2020, 20(2):foaa009[2021-08-21]. . |
15 | DE WACHTER C, LVAN LANDUYT, CALLEWAERT N. Engineering of yeast glycoprotein expression[J]. Adv. Biochem. Eng. Biotechnol., 2021, 175:93-135. |
16 | BAGHBAN R, FARAJNIA S, RAJABIBAZL M, et al.. Yeast expression systems: overview and recent advances[J]. Mol. Biotechnol., 2019, 61(5):365-384. |
17 | KARBALAEI M, REZAEE S A, FARSIANI H. Pichia pastoris: A highly successful expression system for optimal synthesis of heterologous proteins[J]. J. Cell Physiol., 2020, 235(9):5867-5881. |
18 | AHMAND M, HIRZ M, PICHLER H, et al.. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production[J]. Appl. Microbiol. Biotechnol., 2014, 98:5301-5317. |
19 | KIELKOPF C L, BAUER W, URBATSCH I L. Expression of cloned genes in Pichia pastoris using the methanol-inducible promoter AOX1[J/OL]. Cold Spring Harb. Protoc., 2021(1)[2021-08-21]. . |
20 | LI Z, MIAO Y, YANG J, et al.. Efficient improvement of surface displayed lipase from Rhizomucor miehei in Pichia PinkTM protease-deficient system[J/OL]. Protein Expr. Purif., 2021, 180:105804 [2021-08-21]. . |
21 | MADHAVAN A, ARUN K B, RAVEENDRAN S, et al.. Customized yeast cell factories for biopharmaceuticals: From cell engineering to process scale up[J/OL]. Microb. Cell Fact., 2021, 20(1): 124[2021-08-21]. . |
22 | WANG T Y, GUO X. Expression vector cassette engineering for recombinant therapeutic production in mammalian cell systems[J]. Appl. Microbiol. Biotechnol., 2020, 104(13):5673-5688. |
23 | KHAN A H, TY E G J, NOORDIN R. CRISPR-Cas9 genome editing tool for the production of industrial biopharmaceuticals[J]. Mol. Biotechnol., 2020, 62(9):401-411. |
24 | SCHMIEDER V, BYDLINSKI N, STRASSER R, et al.. Enhanced genome editing tools for multi-gene deletion knock-out approaches using paired CRISPR sgRNAs in CHO Cells[J/OL]. Biotechnol. J., 2012, 13(3), e1700211[2021-08-22]. . |
25 | SY A, YAN L, PLD B, et al.. Safety and immunogenicity of a recombinant tandem-repeat dimeric RBD-based protein subunit vaccine (ZF2001) against COVID-19 in adults: two randomised, double-blind, placebo-controlled, phase 1 and 2 trials[J]. Sci. Direct., 2021, 21(8): 1107-1119. |
26 | KALLUNKI T, BARISIC M, JÄÄTTELÄ M, et al.. How to choose the right inducible gene expression Ssystem for mammalian studies?[J/OL]. Cells, 2019, 8(8):796[2021-08-21]. . |
27 | SAMBROOK J, FRITSCH E F, and MANIATIS T. Molecular Cloning[M]. 2nd Edn. New York, NY: Cold Spring Harbor Laboratory Press, 1989. |
28 | MAMAT U, WILKE K, BRAMHILL D, et al.. Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins[J/OL]. Microb. Cell Fact., 2015, 14(1):57[2021-08-21]. . |
29 | XIE Y, HAN X, MIAO Y. An effective recombinant protein expression and purification system in Saccharomyces cerevisiae[J/OL]. Curr. Protoc. Mol. Biol., 2018, 123(1):e62[2021-08-23]. . |
30 | TOMÀS-GAMISANS M, ANDRADE C C P, MARESCA F, et al.. Redox engineering by ectopic overexpression of NADH kinase in recombinant Pichia pastoris (Komagataella phaffii): impact on cell physiology and recombinant production of secreted proteins[J/OL]. Appl. Environ. Microbiol., 2020, 86(6):e02038-19[2021-08-23]. . |
31 | XU S, ZHANG G Y, ZHANG H, et al.. Effects of Rho1, a small GTPase on the production of recombinant glycoproteins in Saccharomyces cerevisiae[J/OL]. Microb. Cell Fact., 2016, 15(1):179[2021-08-21]. . |
32 | HOPSON S E, THOMPSON M J. Heterologous expression of the human polybromo-1 protein in the methylotrophic yeast Pichia pastoris[J]. Protein Expr. Purif., 2018, 152:23-30. |
33 | TURKANOGLU Ö A, YILMAZ S, INAN M. Pichia pastoris promoters[J]. Methods Mol. Biol., 2019, 1923:97-112. |
34 | FAN Y, LEY D, ANDERSEN M R. Fed-batch CHO cell culture for lab-scale antibody production[J]. Methods Mol. Biol., 2018, 1674:147-161. |
35 | GURRAMKONDA C, ADNAN A, GABEL T, et al.. Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: application to intracellular production of hepatitis B surface antigen[J/OL]. Microb. Cell Fact., 2009, 8:13[2021-08-21]. . |
36 | TRAN A M, NGUYEN T T, NGUYEN C T, et al.. Pichia pastoris versus Saccharomyces cerevisiae: a case study on the recombinant production of human granulocyte-macrophage colony-stimulating factor[J/OL]. BMC Res. Notes, 2017,10:148[2021-08-22]. . |
37 | ZHU W, GONG G, PAN J, et al.. High level expression and purifcation of recombinant human serum albumin in Pichia pastoris[J]. Protein Exp. Purif., 2018, 147:61-68. |
38 | ZHANG Z, WU X, CAO L, et al.. Generation of glucagon-like peptide-2-expressing Saccharomyces cerevisiae and its improvement of the intestinal health of weaned rats[J]. Microb. Biotechnol., 2016, 9:846-857. |
39 | CHIGIRA Y, OKA T, OKAJIMA T, et al.. Engineering of a mammalian O-glycosylation pathway in the yeast Saccharomyces cerevisiae: production of O-fucosylated epidermal growth factor domains[J]. Glycobiology, 2008, 18:303-314. |
40 | KATLA S, MOHAN N, PAVAN S S, et al.. Control of specifc growth rate for the enhanced production of human interferon α2b in glycoengineered Pichia pastoris—process analytical technology guided approach[J]. J. Chem. Technol. Biotechnol., 2019, 94:3111-3123. |
41 | MADHAVAN A, SUKUMARAN R K. Secreted expression of an active human interferon-beta (HuIFNβ) in Kluyveromyces lactis[J]. Eng. Life Sci., 2016, 16:379-385. |
42 | BREDELL H, SMITH J J, GORGENS J F, et al.. Expression of unique chimeric human papilloma virus type 16 (HPV-16) L1-L2 proteins in Pichia pastoris and Hansenula polymorpha [J]. Yeast, 2018, 35:519-529. |
43 | GUPTA S K, SHUKLA P. Gene editing for cell engineering: trends and applications[J]. Crit. Rev. Biotechnol., 2016, 37(5):1-13. |
44 | MADHAVAN A, ARUN K B, SINDHU R, et al.. Tailoring of microbes for the production of high value plant-derived compounds: from pathway engineering to fermentative production[J/OL]. Biochim. Biophys. Acta. Proteins Proteom., 2019, 1867:140262 [2021-08-21]. . |
45 | RAHIMI A, HOSSEINI S N, JAVIDANBARDAN A, et al.. Continuous fermentation of recombinant Pichia pastoris Mut+ producing HBsAg: optimizing dilution rate and determining strain-specifc parameters[J]. Food Bioprod. Proc., 2019, 118:248-257. |
46 | LANGER E S, RADER R A. Single‐use technologies in biopharmaceutical manufacturing: A 10‐year review of trends and the future[J]. Engin. Life, 2014, 14(3):238-243. |
47 | TURNER R, JOSEPH A, TITCHENER-HOOKER N, et al.. Manufacturing of proteins and antibodies: chapter downstream processing technologies[J]. Adv. Biochem. Eng. Biotechnol., 2018, 165:95-114. |
48 | DORIVAL-GARCÍA N, CARILLO S, TA C, et al.. Large-scale assessment of extractables and leachables in single-use bags for biomanufacturing[J]. Anal. Chem., 2018, 90(15):9006-9015. |
49 | ÖTES O, FLATO H, VAZQUEZ RAMIREZ D, et al.. Scale-up of continuous multicolumn chromatography for the protein a capture step: from bench to clinical manufacturing[J]. J. Biotechnol., 2018, 281:168-174. |
50 | MAURER M M, SCHILLINGER H. Primary recovery of yeast culture supernatant for recombinant protein purification[J]. Methods Mol. Biol., 2019, 1923:335-342. |
51 | GERVAIS D. Quality control and downstream processing of therapeutic enzymes[J]. Adv. Exp. Med. Biol., 2019, 1148:55-80. |
52 | DHANASEKHARAN K, KESTER B, BARD K H, et al.. Emerging technology trends in biologies development: a contract development and manufacturing perspective[J]. BioProc. Intern., 2016, 14(9): 32,34,36-37. |
53 | TAIPA M Â, FERNANDES P, DE CARVALHO C C C R. Production and purification of therapeutic enzymes[J]. Adv. Exp. Med. Biol., 2019, 1148:1-24. |
54 | SINGH A, UPADHYAY V, UPADHYAY A K, et al.. Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process[J/OL]. Microb. Cell Fact., 2015, 14(1):41[2021-08-23]. . |
55 | ZHANG K, LIU X. Mixed-mode chromatography in pharmaceutical and biopharmaceutical applications[J]. J. Pharm. Biomed. Anal., 2016, 128:73-88. |
56 | KHALAF R, FORRER N, BUFFOLINO G, et al.. Model-based description of peptide retention on doped reversed phase media[J]. J. Chromatogr. A, 2015, 1407:169-175. |
57 | MAKEY D M, SHCHURIK V, WANG H, et al.. Mapping the separation landscape in two-dimensional liquid chromatography: blueprints for efficient analysis and purification of pharmaceuticals enabled by computer-assisted modeling[J]. Anal. Chem., 2021, 93: 964-972. |
58 | KÖRMÖCZI T, SZABÓ Í, FARKAS E, et al.. Heart-cutting two-dimensional liquid chromatography coupled to quadrupole-orbitrap high resolution mass spectrometry for determination of N,N-dimethyltryptamine in rat plasma and brain; method development and application[J/OL]. J. Pharm. Biomed. Anal., 2020, 191:113615[2021-08-21]. . |
59 | STOLL D R, CARR P W. Two-dimensional liquid chromatography: a state of the art tutorial[J]. Anal. Chem., 2017, 89: 519-531. |
60 | LUCA C, FELLETTI S, LIEVORE G, et al.. From batch to continuous chromatographic purification of a therapeutic peptide through multicolumn countercurrent solvent gradient purification[J/OL]. J. Chromatogr. A, 2020, 1625:461304[2021-08-21]. . |
61 | SHAIK M I, SARBON N M. A review on purification and characterization of anti-proliferative peptides derived from fish protein hydrolysate[J/OL]. Food Rev. Int., 2020[2021-08-21]. . |
62 | POOLE C F, ATAPATTU S N. Determination of physicochemical properties of small molecules by reversed-phase liquid chromatography[J/OL]. J. Chromatogr. A, 2020, 1626:461427[2021-08-21]. . |
63 | AHMED S, ATIA N N, RAGEH A H. Selectivity enhanced cation exchange chromatography for simultaneous determination of peptide variants[J]. Talanta, 2019, 199: 347-354. |
64 | MANT C T, BYARS A, ANKARLO S, et al.. Separation of highly charged (+5 to +10) amphipathic α-helical peptide standards by cation-exchange and reversed-phase high-performance liquid chromatography[J]. J. Chromatogr. A, 2018, 1574: 60-70. |
65 | PICCINNI M Z, GUILLE M J. Purifying antibodies raised against xenopus peptides[J/OL]. Cold Spring Harb. Protoc., 2020(9):105619[2021-08-21]. . |
66 | STEINEBACH F, ULMER N, DECKER L, et al.. Experimental design of a twin-column countercurrent gradient purification process[J]. J. Chromatogr. A, 2017, 1492: 19-26. |
67 | VOGG S, ULMER N, SOUQUET J, et al.. Experimental evaluation of the impact of intrinsic process parameters on the performance of a continuous chromatographic polishing unit (MCSGP)[J/OL]. Biotechnol. J., 2019, 14(7): e1800732[2021-08-21]. . |
68 | DE LUCA C, FELLETTI S, BOZZA D, et al.. Process intensification for the purification of peptidomimetics: the case of icatibant through multicolumn countercurrent solvent gradient purification (MCSGP)[J]. Ind. Eng. Chem. Res., 2021, 60: 6826-6834. |
69 | RAO C M. Establishment and application of the quality control technology system for recombinant drugs in China:a review[J]. Chin. Pharm. J., 2016, 51(13): 1057-1066. |
70 | ROGSTAD S, YAN H, WANG X, et al.. Multi-attribute method for quality control of therapeutic proteins[J]. Anal. Chem., 2019, 91(22): 14170-14177. |
[1] | 李丹, 宋浩志, 高维崧, 刘兴健, 张志芳, 李轶女. 小反刍兽疫病毒H蛋白的原核表达及免疫原性测定[J]. 生物技术进展, 2021, 11(6): 770-776. |
[2] | 杨鑫,宋浩志,刘兴健,李轶女,张志芳. 鸡κ干扰素在家蚕杆状病毒表达系统中的表达及其抗病毒活性检测[J]. 生物技术进展, 2020, 10(3): 251-255. |
[3] | 王先翔,赵泽,王朋,刘兴健,胡小元,张志芳,李轶女,房岭丽,叶爱华. 羊λ3干扰素在家蚕杆状病毒表达系统中的表达及其抗病毒活性检测[J]. 生物技术进展, 2019, 9(5): 502-508. |
[4] | 杜梦潭,刘兴健,胡小元,张志芳,李轶女. 腺相关病毒的生产方式及其在基因治疗中的应用[J]. 生物技术进展, 2019, 9(4): 326-331. |
[5] | 何洁, 郭采平. 人转铁蛋白的分离纯化及临床应用进展[J]. 生物技术进展, 2019, 9(1): 28-34. |
[6] | 徐萍,陈瑶,李倩,张伟杰,于萍,胡琴汉,赵婷,茆广华,冯伟伟,仰榴青. 虫蛹活性多肽的制备、分离和生物活性研究进展[J]. 生物技术进展, 2018, 8(5): 383-388. |
[7] | 赵璐璐,赵泽,杨鑫,刘兴健,胡小元,张志芳,李轶女. 牛λ3干扰素在家蚕杆状病毒表达系统中的表达及其抗病毒活性检测[J]. 生物技术进展, 2018, 8(5): 420-425. |
[8] | 鲁念,刘兴健,胡小元,李轶女,易咏竹,张志芳. 利用BmNPV-家蚕表达系统包装重组腺相关病毒2型(rAAV2)研究[J]. 生物技术进展, 2018, 8(1): 71-77. |
[9] | 郑惠惠,江洪. CHO细胞表达系统研究进展[J]. 生物技术进展, 2016, 6(4): 239-243. |
[10] | 刘晓航,高丽婷. 重组人长效促卵泡激素FSH-CTP的纯化工艺研究及鉴定[J]. 生物技术进展, 2016, 6(3): 219-223. |
[11] | 朱俊颖,孙晔,蒋丽华,邱勇隽,赵黎明. 疫苗规模化分离纯化研究进展[J]. 生物技术进展, 2015, 5(6): 405-413. |
[12] | 刘兴健,杨鑫,张志芳,李轶女,易咏竹,胡小元. 猫ω-like干扰素在家蚕中的表达和生物活性检测[J]. 生物技术进展, 2015, 5(6): 441-445. |
[13] | 张云鹏,温彤,姜伟. 大肠杆菌和酵母表达系统的研究进展[J]. 生物技术进展, 2014, 4(6): 389-393. |
[14] | 曹晨华,刘晓志,段月娇,刘素霞,赵伟,常亮,纪丽曼,高健. 实时定量PCR法检测生物技术药物中宿主基因组DNA残留[J]. 生物技术进展, 2014, 4(2): 142-145. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部