生物技术进展 ›› 2025, Vol. 15 ›› Issue (3): 446-455.DOI: 10.19586/j.2095-2341.2025.0015
收稿日期:
2025-02-13
接受日期:
2025-03-10
出版日期:
2025-05-25
发布日期:
2025-07-01
通讯作者:
茆广华,吴向阳
作者简介:
程云硕 E-mail: 2916579457@qq.com
基金资助:
Yunshuo CHENG(), Zixu LI, Guanghua MAO(
), Xiangyang WU(
)
Received:
2025-02-13
Accepted:
2025-03-10
Online:
2025-05-25
Published:
2025-07-01
Contact:
Guanghua MAO,Xiangyang WU
摘要:
为探讨呋虫胺(dinotefuran,DIN)对斑马鱼早期发育阶段的免疫毒性及作用机制,以斑马鱼幼鱼为研究对象,在不同浓度的DIN(2、200和2 000 μg?L-1)中暴露5 d,检测氧化应激、免疫细胞、免疫相关参数及免疫相关通路中基因转录水平4个方面的变化。结果表明,DIN可显著减少中性粒细胞、巨噬细胞、胸腺T细胞的数量(P<0.01),降低溶菌酶(lysozyme,LYS)、IgM和补体C3等免疫因子的含量(P<0.01),提高白细胞介素1β(interleukin 1β,IL-1β)、IL-6、肿瘤坏死因子-α(tumor necrosis factor-α,TNF-α)等炎症因子的含量(P<0.01);可剂量依赖性的增加幼鱼体内的活性氧水平(P<0.01),抑制过氧化氢酶(catalase,CAT)、超氧化物歧化酶(superoxide dismutase,SOD)、谷胱甘肽过氧化物酶(glutathion peroxidase,GSH-Px)等抗氧化酶活性(P<0.01)。同时,DIN暴露改变了TLR4/NF-κB、JAK-STAT和Nrf2-Keap1信号通路中关键基因的转录水平。研究表明,DIN暴露可致斑马鱼幼鱼免疫毒性,且TLR4/NF-κB、JAK-STAT和Nrf2-Keap1通路在其中发挥重要作用。
中图分类号:
程云硕, 李子旭, 茆广华, 吴向阳. 呋虫胺暴露对斑马鱼幼鱼的免疫毒性研究[J]. 生物技术进展, 2025, 15(3): 446-455.
Yunshuo CHENG, Zixu LI, Guanghua MAO, Xiangyang WU. Studies on the Immunological Effects of Dinotefuran Exposure on Zebrafish Juveniles[J]. Current Biotechnology, 2025, 15(3): 446-455.
基因 | 引物序列(5'→3') |
---|---|
tlr4a | F: 5'-CAATGGCTTGGGTACTTTGC-3' |
R: 5'-GATTTGAGGAGTGCCGGATA-3' | |
myd88 | F: 5'-TCCGAAAGAAACTGGGTCTG-3' |
R: 5'-CGGAATAACGGAGTTCAGCTTGTG-3' | |
irak4 | F: 5'-CAGAGAGGATTGTGGGAACGA-3' |
R: 5'-GAGGAAGCCCAGACAAAACCT-3' | |
traf6 | F: 5'-AAGCCGGTCAGCCTATTGTC-3' |
R: 5'-CTGGCTGTCAAACTCACCCT-3' | |
ikkβ | F: 5'-GTGGCGGTGGATTATTGG-3' |
R: 5'-GCACGGGTTGCCAGTTTG-3' | |
il-6 | F: 5'-TGGACGTAAAGAGTCTCCTTGG-3' |
R: 5'-TCATGTTCACCATCTCTCTGAAA-3' | |
il-1β | F: 5'-CATTTGCAGGCCGTCACA-3' |
R: 5'-GGACATGCTGAAGCGCACTT-3' | |
tnf-α | F: 5'-GCTGGATCTTCAAAGTCGGGTGTA-3' |
R: 5'-TGTGAGTCTCAGCACACTTCCATC-3' | |
nfκb p65 | F: 5'-TATGAAGCAGACCTACAG-3' |
R: 5'-TCTTGGCATCAGGAATA-3' | |
keap1 | F: 5'-TGTGATCTGGTTCTGCATGTC-3' |
R: 5'-ACTCCTTGAAGTTGCTGGTG-3' | |
ho-1 | F: 5'-ATGCCCTTGTTTCCAGTCAGC-3' |
R: 5'-CTCGGAGGAGATGGAAGGAAG-3' | |
cat | F:5'-AGGGCAACTGGGATCTTACA-3' |
R: 5'-TTTATGGGACCAGACCTTGG-3' | |
sod | F: 5'-GTCGTCTGGCTTGTGGAGTG-3’ |
R: 5'-TGTCAGCGGGCTAGTGCTT-3' | |
jak1 | F: 5'-GCAGGCAACTGTGTGTGAAG-3' |
R: 5'-AGAACTCGAGCTGGTGTGTG-3' | |
jak2 | F: 5'-TCGCTGCTTCTTCTGTCAGG-3' |
R: 5'-ACAGCCGTCCATTTTGGCTT-3' | |
socs3b | F: 5'-CCTTCCATACCCACCGAGAC-3' |
R: 5'-GCGCTGTCAAGCCTACTATG-3' | |
stat3 | F: 5'-TGTGACACCAACGACCTGC-3' |
R: 5'-CCAAACTGCATCAATGAATCTA-3' | |
gapdh | F: 5'-GTGGAGTCTACTGGTGTCTTC-3' |
R: 5'-GTGCAGGAGGCATTGCTTACA-3' |
表1 实时荧光定量 PCR 引物序列
Table 1 The sequences of primer list used in this study
基因 | 引物序列(5'→3') |
---|---|
tlr4a | F: 5'-CAATGGCTTGGGTACTTTGC-3' |
R: 5'-GATTTGAGGAGTGCCGGATA-3' | |
myd88 | F: 5'-TCCGAAAGAAACTGGGTCTG-3' |
R: 5'-CGGAATAACGGAGTTCAGCTTGTG-3' | |
irak4 | F: 5'-CAGAGAGGATTGTGGGAACGA-3' |
R: 5'-GAGGAAGCCCAGACAAAACCT-3' | |
traf6 | F: 5'-AAGCCGGTCAGCCTATTGTC-3' |
R: 5'-CTGGCTGTCAAACTCACCCT-3' | |
ikkβ | F: 5'-GTGGCGGTGGATTATTGG-3' |
R: 5'-GCACGGGTTGCCAGTTTG-3' | |
il-6 | F: 5'-TGGACGTAAAGAGTCTCCTTGG-3' |
R: 5'-TCATGTTCACCATCTCTCTGAAA-3' | |
il-1β | F: 5'-CATTTGCAGGCCGTCACA-3' |
R: 5'-GGACATGCTGAAGCGCACTT-3' | |
tnf-α | F: 5'-GCTGGATCTTCAAAGTCGGGTGTA-3' |
R: 5'-TGTGAGTCTCAGCACACTTCCATC-3' | |
nfκb p65 | F: 5'-TATGAAGCAGACCTACAG-3' |
R: 5'-TCTTGGCATCAGGAATA-3' | |
keap1 | F: 5'-TGTGATCTGGTTCTGCATGTC-3' |
R: 5'-ACTCCTTGAAGTTGCTGGTG-3' | |
ho-1 | F: 5'-ATGCCCTTGTTTCCAGTCAGC-3' |
R: 5'-CTCGGAGGAGATGGAAGGAAG-3' | |
cat | F:5'-AGGGCAACTGGGATCTTACA-3' |
R: 5'-TTTATGGGACCAGACCTTGG-3' | |
sod | F: 5'-GTCGTCTGGCTTGTGGAGTG-3’ |
R: 5'-TGTCAGCGGGCTAGTGCTT-3' | |
jak1 | F: 5'-GCAGGCAACTGTGTGTGAAG-3' |
R: 5'-AGAACTCGAGCTGGTGTGTG-3' | |
jak2 | F: 5'-TCGCTGCTTCTTCTGTCAGG-3' |
R: 5'-ACAGCCGTCCATTTTGGCTT-3' | |
socs3b | F: 5'-CCTTCCATACCCACCGAGAC-3' |
R: 5'-GCGCTGTCAAGCCTACTATG-3' | |
stat3 | F: 5'-TGTGACACCAACGACCTGC-3' |
R: 5'-CCAAACTGCATCAATGAATCTA-3' | |
gapdh | F: 5'-GTGGAGTCTACTGGTGTCTTC-3' |
R: 5'-GTGCAGGAGGCATTGCTTACA-3' |
图2 DIN对斑马鱼幼鱼免疫系统的影响A:嗜中性粒细胞图(100×);B:巨噬细胞图(11.5×);C:斑马鱼尾鳍去除后中性粒细胞采集图;D:胸腺T细胞荧光图(100×);E:嗜中性粒细胞组;F:巨噬细胞数;G:剪尾后嗜中粒性细胞数;H:胸腺T细胞数;**表示与对照组相比,处理组在P<0.01水平上具有统计学意义。
Fig. 2 Toxicity of DIN to the zebrafish larvae on innate and adaptive immune systems
图4 DIN暴露对斑马鱼幼鱼氧化应激水平的影响A:ROS荧光图像(11.2×); B:DIN暴露对斑马鱼幼鱼氧化应激水平的影响。*、**分别表示在P<0.05和P<0.01水平上具有统计学意义。
Fig. 4 The effect of DIN exposure on levels of oxidative stress in zebrafish larvae
图5 DIN暴露激活NF-κB信号通路A:NF-κB信号通路转录水平示意图; B:NF-κB信号通路中相关基因的表达量。*、**表示与对照组相比,处理组分别在P<0.05和P<0.01水平上具有统计学意义。
Fig. 5 DIN exposure activates the NF-κB signalling pathway
1 | BARTON B, ULLAH N, KOSZELSKA K, et al.. Reviewing neonicotinoid detection with electroanalytical methods[J]. Environ. Sci. Pollut. Res. Int., 2024, 31(26): 37923-37942. |
2 | BASS C, DENHOLM I, WILLIAMSON M S, et al.. The global status of insect resistance to neonicotinoid insecticides[J]. Pestic. Biochem. Physiol., 2015, 121: 78-87. |
3 | 周怡彤, 李清雪, 王斌, 等. 太湖流域西北部地表水中农药的污染特征及生态风险评价[J]. 生态毒理学报, 2020, 15(3):171-183. |
ZHOU Y T, LI Q X, WANG B, et al.. Distribution and ecotoxicological risk assessment of pesticides in surface water of the northwest of Taihu Lake basin[J]. Asian J. Ecotoxicol., 2020, 15(3): 171-183. | |
4 | ZHANG C, JIN L, ZHOU S, et al.. Chiral separation of neonicotinoid insecticides by polysaccharide-type stationary phases using high-performance liquid chromatography and supercritical fluid chromatography[J]. Chirality, 2011, 23(3): 215-221. |
5 | HIRASE K, YAMADA E, KIRITANI Y, et al.. Dinotefuran, a novel neonicotinoid[C]. Plant Protection Towards the 21st Century-Proceedings of the XVth International Plant Protection Congress, 2004. |
6 | DORES E F G C, CARBO L, RIBEIRO M L, et al.. Pesticide levels in ground and surface waters of Primavera do Leste Region, Mato Grosso, Brazil[J]. J. Chromatogr. Sci., 2008, 46(7): 585-590. |
7 | HAYASAKA D, KOBASHI K, HASHIMOTO K. Community responses of aquatic insects in paddy mesocosms to repeated exposures of the neonicotinoids imidacloprid and dinotefuran[J]. Ecotoxicol. Environ. Saf., 2019, 175: 272-281. |
8 | 吕正标. 新烟碱类杀虫剂在水环境中的残留特征及潜在风险[D]. 杭州: 浙江工业大学, 2020. |
9 | BRADLEY P M, JOURNEY C A, ROMANOK K M, et al.. Expanded target-chemical analysis reveals extensive mixed-organic-contaminant exposure in U.S. streams[J]. Environ. Sci. Technol., 2017, 51(9): 4792-4802. |
10 | KAKUTA I, TAKASE K. Exposure to neonicotinoid pesticides induces physiological disorders and affects color performance and foraging behavior in goldfish[J/OL]. Physiol. Rep., 2024, 12(15): e16138[2025-03-10]. . |
11 | TIAN X, HONG X, YAN S, et al.. Neonicotinoids caused oxidative stress and DNA damage in juvenile Chinese rare minnows (Gobiocypris rarus)[J/OL]. Ecotoxicol. Environ. Saf., 2020, 197: 110566[2025-03-10]. . |
12 | 孙琦, 范咏梅, 赖柯华, 等. 呋虫胺对斑马鱼胚胎-幼鱼生长发育及细胞凋亡的影响[J]. 生态毒理学报, 2016, 11(3): 356-364. |
SUN Q, FAN Y M, LAI K H, et al.. Effects of dinotefuran on the embryonic and larvae development and apoptosis in zebrafish (Danio rerio)[J]. Asian J. Ecotoxicol., 2016, 11(3): 356-364. | |
13 | ZHOU X, YANG Y, MING R, et al.. Insight into the differences in the toxicity mechanisms of dinotefuran enantiomers in zebrafish by UPLC-Q/TOF-MS[J]. Environ. Sci. Pollut. Res. Int., 2022, 29(47): 70833-70841. |
14 | 刘林, 赵群芬, 金凯星, 等. 纳米氧化锌对斑马鱼肝脏的毒性效应[J]. 环境科学, 2015, 36(10): 3884-3891. |
LIU L, ZHAO Q F, JIN K X, et al.. Toxic effect of Nano-ZnO in liver of zebrafish[J]. Environ. Sci., 2015, 36(10): 3884-3891. | |
15 | YANG C, LIM W, SONG G. Immunotoxicological effects of insecticides in exposed fishes[J/OL]. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2021, 247: 109064[2025-03-10]. . |
16 | BRODZKI P, GORZKOŚ H, MARCZUK J, et al.. The influence of probiotic administration on the phagocytic and oxidative burst activity of neutrophils and monocytes in the peripheral blood of dairy cows during different lactation periods[J]. J. Vet. Res., 2024, 68(3): 401-408. |
17 | GALLI S J, BORREGAARD N, WYNN T A. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils[J]. Nat. Immunol., 2011, 12(11): 1035-1044. |
18 | XIONG G, ZOU L, DENG Y, et al.. Clethodim exposure induces developmental immunotoxicity and neurobehavioral dysfunction in zebrafish embryos[J]. Fish Shellfish. Immunol., 2019, 86: 549-558. |
19 | XU H, DONG X, ZHANG Z, et al.. Assessment of immunotoxicity of dibutyl phthalate using live zebrafish embryos[J]. Fish Shellfish. Immunol., 2015, 45(2): 286-292. |
20 | 汪霞, 郜兴利, 何炳楠, 等. 拟除虫菊酯类农药的免疫毒性研究进展[J]. 农药学学报, 2017, 19(1): 1-8. |
WANG X, GAO X L, HE B N, et al.. Research progress on the immunotoxicity of pyrethroids[J]. Chin. J. Pestic. Sci., 2017, 19(1): 1-8. | |
21 | GAO X Q, FEI F, HUO H H, et al.. Impact of nitrite exposure on plasma biochemical parameters and immune-related responses in Takifugu rubripes [J/OL]. Aquat. Toxicol., 2020, 218: 105362[2025-03-10]. . |
22 | WINSTON G W. Oxidants and antioxidants in aquatic animals[J]. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 1991, 100(1-2): 173-176. |
23 | 陈幕飞, 黄承志, 蒲德永, 等. CdSe/ZnS量子点对斑马鱼胚胎发育的毒性效应[J]. 环境科学, 2015, 36(2): 719-726. |
CHEN M F, HUANG C Z, PU D Y, et al.. Toxic effects of CdSe/ZnS QDs to zebrafish embryos[J]. Environ. Sci., 2015, 36(2): 719-726. | |
24 | MONTEIRO D A, DE ALMEIDA J A, RANTIN F T, et al.. Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion)[J]. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2006, 143(2): 141-149. |
25 | ZHANG Q, ZHAO M, QIAN H, et al.. Enantioselective damage of diclofop acid mediated by oxidative stress and acetyl-coA carboxylase in nontarget plant Arabidopsis thaliana [J]. Environ. Sci. Technol., 2012, 46(15): 8405-8412. |
26 | WANG Y Y L, CAI Y, KAZMI S S U H, et al.. Temperature-dependent effects of neonicotinoids on the embryonic development of zebrafish (Danio rerio)[J]. Front. Mar. Sci, 2023, 9: 1101737[2025-04-22]. . |
27 | SUZUKI T, YAMAMOTO M. Molecular basis of the Keap1-Nrf2 system[J]. Free. Radic. Biol. Med., 2015, 88: 93-100. |
28 | 周俊豪, 刘念, 杨映. 硬骨鱼类Keap1-Nrf2/ARE信号通路研究进展[J]. 水产学杂志, 2022, 35(4): 117-124. |
ZHOU J H, LIU N, YANG Y. Keap1-Nrf2/ARE signaling pathway and its antioxidant regulation in teleost fish: a review[J]. Chin. J. Fish., 2022, 35(4): 117-124. | |
29 | OSORIO J S, TREVISI E, JI P, et al.. Biomarkers of inflammation, metabolism, and oxidative stress in blood, liver, and milk reveal a better immunometabolic status in peripartal cows supplemented with Smartamine M or MetaSmart[J]. J. Dairy Sci., 2014, 97(12): 7437-7450. |
30 | STOCKHAMMER O W, ZAKRZEWSKA A, HEGEDÛS Z, et al.. Transcriptome profiling and functional analyses of the zebrafish embryonic innate immune response to Salmonella infection[J]. J. Immunol., 2009, 182(9): 5641-5653. |
31 | VAN DER VAART M, VAN SOEST J J, SPAINK H P, et al.. Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system[J]. Dis. Model. Mech., 2013, 6(3): 841-854. |
32 | WU P, LIU X W, FENG L, et al.. (2-Carboxyethyl) dimethylsulfonium bromide supplementation in non-fish meal diets for on-growing grass carp (Ctenopharyngodon idella): beneficial effects on immune function of the immune organs via modulation of NF-κB and TOR signalling pathway[J]. Fish Shellfish Immunol., 2020, 107(Pt A): 309-323. |
33 | ZHANG C, PU C, LI S, et al.. Lactobacillus delbrueckii ameliorates Aeromonas hydrophila-induced oxidative stress, inflammation, and immunosuppression of Cyprinus carpio Huanghe var NF-κB/Nrf2 signaling pathway[J/OL]. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 2024, 285: 110000[2025-03-10]. . |
34 | DOU W, ZHANG J, SUN A, et al.. Protective effect of naringenin against experimental colitis via suppression of Toll-like receptor 4/NF-κB signalling[J]. Br. J. Nutr., 2013, 110(4): 599-608. |
35 | KHANNA P, CHUA P J, BAY B H, et al.. The JAK/STAT signaling cascade in gastric carcinoma (review)[J]. Int. J. Oncol., 2015, 47(5): 1617-1626. |
36 | ARUMUGGAM N, BHOWMICK N A, VASANTHA RUPASINGHE H P. A review: phytochemicals targeting JAK/STAT signaling and IDO expression in cancer[J]. Phytother. Res., 2015, 29(6): 805-817. |
37 | TRACEY K J. The inflammatory reflex[J]. Nature, 2002, 420(6917): 853-859. |
38 | ANDERSSON J. The inflammatory reflex: introduction[J]. J. Intern. Med., 2005, 257(2): 122-125. |
39 | 刘旺. 2,4-二叔丁基苯酚对斑马鱼的免疫毒性效应及其作用机制研究[D]. 呼和浩特: 内蒙古大学, 2021. |
40 | 姚一琳. 斑马鱼肠道微细结构及肠粘膜屏障的研究[D]. 南京: 南京农业大学,2010. |
[1] | 陈雪娇, 余萍, 赵迪, 宋佳, 闵祥博. 基于斑马鱼模型及网络药理学研究植物乳植杆菌HCS03-001抗细菌炎症的作用[J]. 生物技术进展, 2024, 14(2): 295-303. |
[2] | 赵歆, 李鑫玉, 李明浩, 周诗艺, 邓雅琪, 郑至远, 邹伟. 秀丽隐杆线虫模型在记忆和遗忘行为研究中的运用[J]. 生物技术进展, 2023, 13(6): 837-843. |
[3] | 王阿利, 刘江东. CRISPR/Cas系统在斑马鱼中的研究进展[J]. 生物技术进展, 2023, 13(4): 485-491. |
[4] | 杨倩婷, 田晓英, 张俊芳, 韩兵社. 敲除tp53对斑马鱼高温耐受能力和运动能力的影响[J]. 生物技术进展, 2023, 13(4): 580-587. |
[5] | 熊茂兰, 蔚思言, 罗军涛, 韩兵社, 张俊芳. 敲除hdac11基因对斑马鱼脂代谢的影响[J]. 生物技术进展, 2023, 13(4): 588-595. |
[6] | 张维, 王红芳, 胥保华. 生物衰老的主要分子机制概述[J]. 生物技术进展, 2023, 13(2): 228-233. |
[7] | 高桂珍, 翟云孤, 张鲁斌, 常金梅, 罗海华, 伍晓明. 油菜耐盐碱种质鉴定与品种选育研究进展[J]. 生物技术进展, 2022, 12(5): 647-654. |
[8] | 陶鸽如, 秦树存. 氢生物医学效应在疏解自由基氧化应激的分子机制[J]. 生物技术进展, 2022, 12(4): 490-496. |
[9] | 廖桃桃,汤俊杰,史潇翔,张伟杰,茆广华,吴向阳. 十溴联苯醚(BDE-209)短期暴露对成年期小鼠的免疫毒性研究[J]. 生物技术进展, 2021, 11(2): 204-213. |
[10] | 谢亚东,解明旭,李解,王安然,杨培龙,冉超,周志刚. 无菌斑马鱼感染鲤春病毒血症病毒模型的建立[J]. 生物技术进展, 2019, 9(4): 369-374. |
[11] | YAO Mawulikplimi Adzavon,赵鹏翔,张旭娟,王丽敏,马雪梅. 巨噬细胞迁移抑制因子分子机制研究进展[J]. 生物技术进展, 2018, 8(5): 389-396. |
[12] | 鲁程瑶,张震,丁倩雯,李解,刘宇,冉超,张洪玲,张进雄,周志刚. 外源性胰岛素对斑马鱼血糖及其转运的影响[J]. 生物技术进展, 2018, 8(5): 426-434. |
[13] | 刘红阳,茆广华,许海,冯伟伟,赵婷,丁阳阳,陈瑶,仰榴青,吴向阳. 铅和邻苯二甲酸二丁酯联合暴露对斑马鱼胚胎的影响[J]. 生物技术进展, 2016, 6(4): 249-254. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部