生物技术进展 ›› 2023, Vol. 13 ›› Issue (2): 228-233.DOI: 10.19586/j.2095-2341.2022.0170
• 进展评述 • 上一篇
收稿日期:
2022-10-21
接受日期:
2023-01-12
出版日期:
2023-03-25
发布日期:
2023-04-07
通讯作者:
胥保华
作者简介:
张维 E-mail: zw15369312856@163.com;
基金资助:
Wei ZHANG(), Hongfang WANG, Baohua XU(
)
Received:
2022-10-21
Accepted:
2023-01-12
Online:
2023-03-25
Published:
2023-04-07
Contact:
Baohua XU
摘要:
衰老是一种包括生理性衰老和病理性衰老的正常自然规律,与其他生物过程一样,受一些信号通路和分子机制的调控。研究发现调控生物衰老机制的信号通路之间存在相互作用。综述了胰岛素通路、雷帕霉素通路及Sirtuins家族这3种与自噬相关的延缓衰老的经典信号通路,总结了氧化应激、细胞衰老、免疫衰老等影响机体衰老的主要原因及方式,希望在此基础上发现新的互作通路,探索出更多新颖的分子机制和方法以预防、延缓或减轻多种与衰老相关的疾病。
中图分类号:
张维, 王红芳, 胥保华. 生物衰老的主要分子机制概述[J]. 生物技术进展, 2023, 13(2): 228-233.
Wei ZHANG, Hongfang WANG, Baohua XU. Overview of the Main Molecular Mechanisms of Biological Aging[J]. Current Biotechnology, 2023, 13(2): 228-233.
1 | GAO C, LI Q, YU J, et al.. Endocrine pheromones couple fat rationing to dauer diapause through HNF4α nuclear receptors[J]. Sci. China Life Sci., 2021, 64(12): 2153-2174. |
2 | CAMPISI J, KAPAHI P, LITHGOW G J, et al.. From discoveries in ageing research to therapeutics for healthy ageing[J]. Nature, 2019, 571(7764): 183-192. |
3 | MCCAY C M, MAYNARD L A, SPERLING G, et al.. Retarded growth, life span, ultimate body size and age changes in the albino rat after feeding diets restricted in calories[J]. Nutr. Rev., 1975, 33(8): 241-243. |
4 | RUSSO G L, SPAGNUOLO C, RUSSO M, et al.. Mechanisms of aging and potential role of selected polyphenols in extending healthspan[J/OL]. Biochem. Pharmacol., 2020, 173: 113719[2022-08-23]. . |
5 | GUARENTE L, KENYON C. Genetic pathways that regulate ageing in model organisms[J]. Nature, 2000, 408(6809): 255-262. |
6 | LONGO V D, FINCH C E. Evolutionary medicine: from dwarf model systems to healthy centenarians[J]. Science, 2003, 299(5611): 1342-1346. |
7 | TATAR M, BARTKE A, ANTEBI A. The endocrine regulation of aging by insulin-like signals[J]. Science, 2003, 299(5611): 1346-1351. |
8 | KIM S S, LEE C K. Growth signaling and longevity in mouse models[J]. BMB Rep., 2019, 52(1): 70-85. |
9 | FRIEDMAN D B, JOHNSON T E. A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility[J]. Genetics, 1988, 118(1): 75-86. |
10 | KENYON C, CHANG J, GENSCH E, et al.. A C. elegans mutant that lives twice as long as wild type[J]. Nature, 1993, 366(6454): 461-464. |
11 | KLASS M R. A method for the isolation of longevity mutants in the nematode Caenorhabditis elegans and initial results[J]. Mech. Ageing Dev., 1983, 22(3-4): 279-286. |
12 | CORDEIRO L M, MACHADO M L, SILVA F D A, et al.. Rutin protects Huntington's disease through the insulin/IGF1(IIS) signaling pathway and autophagy activity: study in Caenorhabditis elegans model[J/OL]. Food Chem. Toxicol., 2020, 141: 111323[2022-09-01]. . |
13 | KENYON C J. The genetics of ageing[J]. Nature, 2010, 464(7288): 504-512. |
14 | VEECH R L, BRADSHAW P C, CLARKE K, et al.. Ketone bodies mimic the life span extending properties of caloric restriction[J]. IUBMB Life, 2017, 69(5): 305-314. |
15 | KAPAHI P, ZID B M, HARPER T, et al.. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway[J]. Curr. Biol., 2004, 14(10): 885-890. |
16 | KAEBERLEIN M, POWERS R W, STEFFEN K K, et al.. Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients[J]. Science, 2005, 310(5751): 1193-1196. |
17 | CAPRI M, SANTORO A, GARAGNANI P, et al.. Genes of human longevity: an endless quest[J]. Curr. Vasc. Pharmacol., 2014, 12 (5): 707-717. |
18 | LIU G Y, SABATINI D M. mTOR at the nexus of nutrition, growth, ageing and disease[J]. Nat. Rev. Mol Cell Biol., 2020, 21 (4): 183-203. |
19 | JIA K, CHEN D, RIDDLE D L. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span[J]. Development, 2004, 131(16):3897-3906. |
20 | VELLAI T, TAKACS-VELLAI K, ZHANG Y, et al.. Genetics: influence of TOR kinase on lifespan in C . elegans[J/OL]. Nature, 2003, 426(6967): 620[2022-09-01]. . |
21 | SAXTON R A, SABATINI D M. mTOR signaling in growth, metabolism, and disease[J]. Cell, 2017, 169(2): 361-371. |
22 | RUSSELL R C, YUAN H X, GUAN K L. Autophagy regulation by nutrient signaling[J]. Cell Res., 2014, 24(1): 42-57. |
23 | ANTIKAINEN H, DRISCOLL M, HASPEL G, et al.. TOR-mediated regulation of metabolism in aging[J]. Aging Cell, 2017, 16(6): 1219-1233. |
24 | WANG L, DU J, ZHAO F, et al.. Trillium tschonoskii maxim saponin mitigates D-galactose-induced brain aging of rats through rescuing dysfunctional autophagy mediated by Rheb-mTOR signal pathway[J]. Biomed. Pharmacother., 2018, 98: 516-522. |
25 | KENNEDY B K, LAMMING D W. The mechanistic target of rapamycin: the grand conducTOR of metabolism and aging[J]. Cell Metab., 2016, 23(6): 990-1003. |
26 | VASSILOPOULOS A, FRITZ K S, PETERSEN D R, et al.. The human sirtuin family: evolutionary divergences and functions[J]. Hum. Genom., 2011, 5(5): 485-496. |
27 | VAN DEVEN R A H, SANTOS D, HAIGIS M C. Mitochondrial Sirtuins and molecular mechanisms of aging[J]. Trends Mol. Med., 2017, 23(4): 320-331. |
28 | FANG E F, LAUTRUP S, HOU Y, et al.. NAD(+) in aging: molecular mechanisms and translational implications[J]. Trends Mol. Med., 2017, 23(10): 899-916. |
29 | SATOH A, BRACE C S, RENSING N, et al.. Sirt1 extends life span and delays aging in mice through the regulation of Nk2 homeobox1 in the DMH and LH[J]. Cell Metab., 2013, 18(3): 416-430. |
30 | KENYON C. The plasticity of aging: insights from long-lived mutants[J]. Cell, 2005, 120(4): 449-460. |
31 | BERDICHEVSKY A, VISWANATHAN M, HORVITZ H R, et al.. C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span[J]. Cell, 2006, 125(6): 1165-1177. |
32 | HEIDLER T, HARTWIG K, DANIEL H, et al.. Caenorhabditis elegans lifespan extension caused by treatment with an orally active ROS-generator is dependent on DAF-16 and SIR-2.1[J]. Biogerontology, 2010, 11(2): 183-195. |
33 | ALMEIDA M, PORTER R M. Sirtuins and FoxOs in osteoporosis and osteoarthritis[J]. Bone, 2019, 121: 284-292. |
34 | PEARSON K J, BAYR J A, LEWIS K N, et al.. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span[J]. Cell Metab., 2008, 8(2): 157-168. |
35 | HARMAN D. Aging: a theory based on free radical and radiation chemistry[J]. J. Gerontol., 1956, 11(3): 298-300. |
36 | SARGIS R M, SUBBAIAH P V. Protection of membrane cholesterol by sphingomyelin against free radical-mediated oxidation[J]. Free Radic. Biol. Med., 2006, 40(12): 2092-2102. |
37 | WALLACE D C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine[J]. Annu. Rev. Genet., 2005,39: 359-407. |
38 | 陈瑗,周玫,刘尚喜,等.营养、衰老与自由基理论[J].营养学报,2005(3): 177-180. |
39 | 杨茂林,孟思进.线粒体氧化损伤在衰老发生机制中的作用[J].医学综述,2010,16(9):1297-1300. |
40 | KUJOTH G C, HIONA A, PUGH T D, et al.. Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging[J]. Science, 2005, 309(5733): 481-484. |
41 | TRIFUNOVIC A, HANSSON A, WREDENBERG A, et al.. Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production[J]. Proc. Natl. Acad. Sci. USA, 2005, 102(50): 17993-17998. |
42 | MIKULA-PIETRASIK J, NIKLAS A, URUSKI P, et al.. Mechanisms and significance of therapy-induced and spontaneous senescence of cancer cells[J]. Cell Mol. Life Sci., 2020, 77(2): 213-229. |
43 | GORGOULIS V, ADAMS P D, ALIMONTI A, et al.. Cellular senescence: defining a path forward[J]. Cell, 2019, 179(4): 813-827. |
44 | 薛嘉,谢晓刚,康健,等.通过自噬调控细胞衰老的研究进展[J].动物医学进展,2021,42 (1):110-115. |
45 | BORGHESAN M, HOOGAARS W M H, VARELA-EIRIN M, et al.. A senescence-centric view of aging: implications for longevity and disease[J]. Trends Cell Biol., 2020, 30(10): 777-791. |
46 | COPPE J P, PATIL C K, RODIER F, et al.. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor[J]. PLoS Biol., 2008, 6(12): 2853-2868. |
47 | COPPEJP, DESPREZ P Y, KRTOLICA A, et al.. The senescence-associated secretory phenotype: the dark side of tumor suppression[J]. Annu. Rev. Pathol., 2010, 5: 99-118. |
48 | FRANCESCHI C, CAMPISI J. Chronic inflammation (inflammaging) and its potential contribution to age-associated disease[J]. J. Gerontol. A Biol. Sci. Med. Sci., 2014, 69(S1): S4-S9. |
49 | LQPEZ-OTIN C, BLASCO M A, PARTRIDGE L, et al.. The hallmarks of aging[J]. Cell, 2013, 153(6): 1194-1217. |
50 | ACOSTA J C, BANITO A, WUESTEFELD T, et al.. A complex secretory program orchestrated by the inflammasome controls paracrine senescence[J]. Nat. Cell Biol., 2013, 15(8): 978-990. |
51 | COPPEJP, KAUSER K, CAMPISI J, et al.. Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence[J]. J. Biol. Chem., 2006, 281(40): 29568-19574. |
52 | TUOMISTO K, JOUSILAHTI P, SUNDVALL J, et al.. C-reactive protein, interleukin-6 and tumor necrosis factor alpha as predictors of incident coronary and cardiovascular events and total mortality. A population-based, prospective study[J]. Thromb. Haemost., 2006, 95(3): 511-518. |
53 | XU M, PIRTSKHALAVA T, FARR J N, et al.. Senolytics improve physical function and increase lifespan in old age[J]. Nat. Med., 2018, 24(8): 1246-1256. |
54 | FONTANA L, MITCHELL S E, WANG B, et al.. The effects of graded caloric restriction: XII. comparison of mouse to human impact on cellular senescence in the colon[J/OL]. Aging Cell, 2018, 17(3): e12746[2022-10-10]. . |
55 | XU C, WANG L, FOZOUNI P, et al.. SIRT1 is downregulated by autophagy in senescence and ageing[J]. Nat. Cell Biol., 2020, 22(10): 1170-1179. |
56 | NIE D, ZHANG J, ZHOU Y, et al.. Rapamycin treatment of tendon stem/progenitor cells reduces cellular senescence by upregulating autophagy[J/OL]. Stem Cells Int., 2021, 2021: 6638249[2022-10-11]. . |
57 | BOURGEOIS B, MADL T. Regulation of cellular senescence via the FOXO4-p53 axis[J]. FEBS Lett., 2018, 592(12): 2083-2097. |
58 | KIM J, AHN D, PARK C J. Biophysical investigation of the dual binding surfaces of human transcription factors FOXO4 and p53[J]. FEBS J., 2022, 289(11): 3163-3182. |
59 | XU W, WONG G, HWANG Y Y, et al.. The untwining of immunosenescence and aging[J]. Semin Immunopathol., 2020, 42(5): 559-572. |
60 | ROSTAMZADEH D, YOUSEFI M, HAGHSHENAS M R, et al.. mTOR signaling pathway as a master regulator of memory CD8(+) T-cells, Th17, and NK cells development and their functional properties[J]. J. Cell Physiol., 2019, 234(8): 12353-12368. |
61 | YOUSEFZADEH M J, FLORES R R, ZHU Y, et al.. An aged immune system drives senescence and ageing of solid organs[J]. Nature, 2021, 594(7861): 100-105. |
62 | BONAFEM, SABBATINELLI J, OLIVIERI F. Exploiting the telomere machinery to put the brakes on inflamm-aging[J/OL]. Ageing Res. Rev., 2020, 59: 101027[2022-10-10]. . |
63 | PERRETTI M, D'ACQUISTO F. Novel aspects of annexin 1 and glucocorticoid biology: intersection with nitric oxide and the lipoxin receptor[J]. Inflamm. Allergy Drug Targets., 2006, 5(2): 107-114. |
64 | MORRISETTE-THOMAS V, COHEN A A, LI Q, et al.. Inflamm-aging does not simply reflect increases in pro-inflammatory markers[J]. Mech. Ageing Dev., 2014, 139: 49-57. |
[1] | 董立强, 王斌, 苏适, 刘东琦. 雷公藤红素抗肿瘤作用及机制研究进展[J]. 生物技术进展, 2023, 13(1): 77-82. |
[2] | 高桂珍, 翟云孤, 张鲁斌, 常金梅, 罗海华, 伍晓明. 油菜耐盐碱种质鉴定与品种选育研究进展[J]. 生物技术进展, 2022, 12(5): 647-654. |
[3] | 徐奔, 覃锐, 向航, 许京淑, 廖子龙, 向金平. 臭椿酮抑制急性骨髓性白血病细胞恶性生物学行为的研究[J]. 生物技术进展, 2022, 12(5): 769-777. |
[4] | 赵佩, 邹青, 李泽霖. 黄芪甲甙对急性心肌梗死大鼠心室重构和NOX/ROS/TNF⁃α信号通路的影响[J]. 生物技术进展, 2022, 12(5): 778-785. |
[5] | 陶鸽如, 秦树存. 氢生物医学效应在疏解自由基氧化应激的分子机制[J]. 生物技术进展, 2022, 12(4): 490-496. |
[6] | 陈晓光, 潘晓峰, 王帆, 潘宋斌. 人参皂苷Rg1对阿尔茨海默症大鼠BDNF⁃TrkB信号通路的影响[J]. 生物技术进展, 2022, 12(3): 446-451. |
[7] | 黄乔木, 何艳. 雷帕霉素对糖尿病肾病大鼠足细胞生物学行为及mTOR信号通路的影响[J]. 生物技术进展, 2022, 12(3): 460-466. |
[8] | 李坤, 金丽华. 果蝇造血器官淋巴腺的研究进展[J]. 生物技术进展, 2022, 12(2): 222-228. |
[9] | 孙卉, 张春义, 姜凌. 辅酶Ⅰ体内代谢调控研究进展[J]. 生物技术进展, 2021, 11(4): 526-534. |
[10] | 张旭娟,赵鹏翔,YAO Mawulikplimi Adzavon,李秦剑,谢飞. EBV与TLRs信号通路相互作用机制研究进展[J]. 生物技术进展, 2019, 9(3): 231-239. |
[11] | YAO Mawulikplimi Adzavon,赵鹏翔,张旭娟,王丽敏,马雪梅. 巨噬细胞迁移抑制因子分子机制研究进展[J]. 生物技术进展, 2018, 8(5): 389-396. |
[12] | 白志慧,王彦,张日丽,许维恒,张俊平. 秀丽隐杆线虫免疫衰老指标的建立[J]. 生物技术进展, 2017, 7(3): 230-235. |
[13] | 高丽,谌颜,扈廷茂,李光鹏. 肌肉生长抑制素基因在哺乳动物中的最新研究进展[J]. 生物技术进展, 2014, 4(6): 381-388. |
[14] | 齐希梁,程红梅. eds1、atr/nrc1、ahl19三个抗病相关的防卫基因的研究进展[J]. 生物技术进展, 2013, 3(4): 238-22. |
[15] | 赵宏,刘昱辉. 人表皮细胞生长因子及其研究进展[J]. 生物技术进展, 2011, 1(2): 122-129. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部