生物技术进展 ›› 2024, Vol. 14 ›› Issue (6): 1016-1023.DOI: 10.19586/j.2095-2341.2024.0113
收稿日期:
2024-06-11
接受日期:
2024-08-01
出版日期:
2024-11-25
发布日期:
2024-12-27
作者简介:
彭海霞 E-mail: penghaixia@nwafu.edu.cn
基金资助:
Haixia PENG1(), Shijuan WANG2, Zhuanxia XIN1, Li MEI1, Meng MA2
Received:
2024-06-11
Accepted:
2024-08-01
Online:
2024-11-25
Published:
2024-12-27
摘要:
鉴于特异性PCR、试纸条等常用转基因植株检测方法存在费时费力且需要一定专业技术等局限性,研究希望探索一种低成本、高效、操作简便且适用于小麦全生育期田间大规模筛选的转基因植株鉴定方法。选取具有草铵膦除草剂BASTA抗性的转基因小麦进行最适BASTA溶液浓度筛选,发现在大田环境下200 mg·L-1的BASTA溶液可分别在苗期和扬花期有效鉴定转基因阳性植株。同时,为了验证BASTA叶片涂抹法的准确性和实用性,选取20个T0代转基因小麦样本,分别采用Bar试纸条、特异性PCR和BASTA叶片涂抹法3种方法进行转基因阳性鉴定。结果显示,BASTA叶片涂抹法与Bar试纸条鉴定结果一致,并且其检测范围能够覆盖特异性PCR的检测结果。与传统方法相比,BASTA叶片涂抹法成本低、高效、操作便捷,且全生育期可用,尤其适用于田间转基因植株的大规模筛选。
中图分类号:
彭海霞, 汪世娟, 辛转霞, 梅莉, 马猛. 一种低成本、高效、操作简便的转基因植株鉴定方法[J]. 生物技术进展, 2024, 14(6): 1016-1023.
Haixia PENG, Shijuan WANG, Zhuanxia XIN, Li MEI, Meng MA. A Low-cost, Efficient and Easy-to-operate Method for Transgenic Plant Identification[J]. Current Biotechnology, 2024, 14(6): 1016-1023.
图1 p35S::Bar表达载体结构示意图注:LB—左边界;35S-T—花椰菜花叶病毒35S (CaMV35S)基因终止子;Bar—抗除草剂基因;p35S—花椰菜花叶病毒35S启动子;Nos T—nos基因终止子;RB—右边界。
Fig. 1 The structure of p35S::Bar vector
图2 苗期和扬花期用不同浓度BASTA溶液涂抹小麦叶片7 d后的表型
Fig. 2 Phenotype of wheat leaves painted with different concentrations of BASTA after 7 days at seedling and flowering stage
图5 T0代转基因植株特异片段的PCR检测注:M—D2000 DNA Marker;ddH2O—空白对照;WT—JW1野生型阴性对照;PC—阳性对照;T0-1~T0-20—T0代转基因小麦植株。
Fig. 5 PCR detection of T0 generation transgenic plants
株系 | 特异性PCR | Bar试纸条 | BASTA叶片涂抹 |
---|---|---|---|
T0-1 | - | + | + |
T0-2 | + | + | + |
T0-3 | + | + | + |
T0-4 | - | + | + |
T0-5 | + | + | + |
T0-6 | - | + | + |
T0-7 | + | + | + |
T0-8 | + | + | + |
T0-9 | + | + | + |
T0-10 | - | + | + |
T0-11 | + | + | + |
T0-12 | + | + | + |
T0-13 | + | + | + |
T0-14 | + | + | + |
T0-15 | + | + | + |
T0-16 | + | + | + |
T0-17 | + | + | + |
T0-18 | + | + | + |
T0-19 | + | - | - |
T0-20 | - | - | - |
表1 特异性PCR、Bar试纸条和BASTA叶片涂抹鉴定转基因小麦结果比较
Table 1 Comparison of specific PCR, Bar test strips and BASTA leaf coating for identification of transgenic wheat
株系 | 特异性PCR | Bar试纸条 | BASTA叶片涂抹 |
---|---|---|---|
T0-1 | - | + | + |
T0-2 | + | + | + |
T0-3 | + | + | + |
T0-4 | - | + | + |
T0-5 | + | + | + |
T0-6 | - | + | + |
T0-7 | + | + | + |
T0-8 | + | + | + |
T0-9 | + | + | + |
T0-10 | - | + | + |
T0-11 | + | + | + |
T0-12 | + | + | + |
T0-13 | + | + | + |
T0-14 | + | + | + |
T0-15 | + | + | + |
T0-16 | + | + | + |
T0-17 | + | + | + |
T0-18 | + | + | + |
T0-19 | + | - | - |
T0-20 | - | - | - |
图6 qRT-PCR检测T1代转基因小麦中靶基因的表达水平注:**代表与WT相比,差异在P<0.01水平具有统计学意义。
Fig. 6 qRT-PCR to detect the expression levels of target genes in T1 generation transgenic wheat
1 | 林敏.转基因技术[M].北京:中国农业科学技术出版社,2020. |
LIN M. Transgenic technology[M]. China Agricultural Science and Technology Press, 2020. | |
2 | VARSHNEY R K, BOHRA A, YU J M, et al.. Designing future crops: genomics-assisted breeding comes of age[J]. Trends Plant Sci., 2021, 26(6): 631-649. |
3 | VASIL I K. A history of plant biotechnology: from the cell theory of schleiden and schwann to biotech crops[J]. Plant Cell Rep., 2008, 27(9): 1423-1440. |
4 | 林敏.农业生物育种技术的发展历程及产业化对策[J].生物技术进展,2021,11(4):405-417. |
LIN M. The development course and industrialization countermeasure of agricultural biological breeding technology[J]. Curr Biotechnol, 2021, 11(4):405-417. | |
5 | 张慧颖,王颖,韩成贵.转基因技术在中国主要粮食作物改良中的研究进展[J].农学学报,2022,12(10):44-50. |
ZHANG H Y, WANG Y, HAN C G. Progress of transgenic technology in improving staple food crops in China[J]. J. Agric., 2022, 12(10): 44-50. | |
6 | 王颢潜,李夏莹,张丽,等.转基因产品检测标准物质量值一致性研究进展[J].生物技术通报,2020,36(5):1-8. |
WANG H Q, LI X Y, ZHANG L, et al.. Research progress on the trait value consistency of reference materials for genetically modified organism[J]. Biotechnol. Bull., 2020, 36(5): 1-8. | |
7 | 王颢潜,高鸿飞,王梦雨,等.转基因生物成分快速检测技术研究进展[J].中国油料作物学报,2022,44(3):491-496. |
WANG H Q, GAO H F, WANG M Y, et al.. Research progress on the rapid detection technologies for composition of genetically modified organisms[J]. Chin J Oil Crop Sci, 2022, 44(3): 491-496. | |
8 | HUANG C K, LIN Y N, HUANG W S, et al.. RNA-based detection of genetically modified plants via current-voltage characteristic measurement[J]. J. Biotechnol., 2024, 383: 27-38. |
9 | 林鹰,杨文莉,周玲艳,等.农业转基因核酸标准物质研究进展[J].生物技术通报,2022,38(8):52-59. |
LIN Y, YANG W L, ZHOU L Y, et al.. Research progress in agricultural genetically modified nucleic acid reference materials[J]. Biotechnol. Bull., 2022, 38(8): 52-59. | |
10 | 张大兵,郭金超.转基因生物及其产品检测技术和标准化[J].生命科学,2011,23(2):195-204. |
ZHANG D B, GUO J C. The development and standardization of testing approaches for genetically modified organisms and their derived products[J]. Chin. Bull. Life Sci., 2011, 23(2): 195-204. | |
11 | 张晓磊,章秋艳,熊炜,等.转基因植物检测方法及标准化概述[J].中国农业大学学报,2020,25(9):1-12. |
ZHANG X L, ZHANG Q Y, XIONG W, et al.. Overview of detection methods and standardization for transgenic plants[J]. J. China Agric. Univ., 2020, 25(9): 1-12. | |
12 | 王颢潜,陈锐,李夏莹,等.转基因产品成分检测技术研究进展[J].生物技术通报,2018,34(3):31-38. |
WANG H Q, CHEN R, LI X Y, et al.. Research progress on the testing technologies for composition in genetically modified products[J]. Biotechnol. Bull., 2018, 34(3): 31-38. | |
13 | 中华人民共和国国务院.农业转基因生物安全管理条例[Z].2017. |
The State Council of the People's Republic of China Regulations on Administration of Agricultural Genetically Modified Organisms Safety[Z]. 2017. | |
14 | 黄耀辉,王艺洁,杨立桃,等.生物育种新技术作物的安全管理[J].生物技术进展,2022,12(2):198-204. |
HUANG Y H, WANG Y J, YANG L T, et al.. Safety management of the crop produced by new breeding techniques[J]. Curr. Biotechnol., 2022, 12(2): 198-204. | |
15 | 李红杰,贾亚男,张彦军,等.国内外转基因与基因编辑作物监管现状[J].中国农业大学学报,2023,28(9):1-11. |
LI H J, JIA Y N, ZHANG Y J, et al.. Regulatory status of GM and gene-edited crops at domestic and abroad[J]. J. China Agric. Univ., 2023, 28(9): 1-11. | |
16 | 程军栋.我国转基因生物安全法律法规研究[J].分子植物育种,2022,1-7 [2022-04-12]. . |
CHENG J D. Research on the safety laws and regulations of genetically modified organisms in my country[J/OL]. Mol. Plant Breed., 2022, 1-7[2022-04-12]. . | |
17 | 兰青阔,李文龙,孙卓婧,等.国内外转基因检测标准体系现状与启示[J].农业科技管理,2020,39(3):27-32. |
LAN Q K, LI W L, SUN Z J, et al.. Status and enlightenment of the standard system for GMO detection in China and abroad[J]. Manag. Agric. Sci. Technol., 2020, 39(3): 27-32. | |
18 | 茆少星.转基因产品四种快检方法比较与快检方法评价模型构建[D].南京:南京师范大学,2021. |
MAO S X. Comparison of four quick inspection methods for transgenic products and construction of evaluation model for quick inspection methods[D]. Nanjing: Nanjing Normal University, 2021. | |
19 | DATUKISHVILI N, KUTATELADZE T, GABRIADZE I, et al.. New multiplex PCR methods for rapid screening of genetically modified organisms in foods[J]. Front. Microbiol., 2015, 6: 757. |
20 | 邢珍娟,董立明,刘娜,等.多重PCR检测耐除草剂转基因作物[J].核农学报,2019,33(2):255-261. |
XING Z J, DONG L M, LIU N, et al.. Multiplex PCR detection of herbicide-tolerant genes in genetically modified crops[J]. J. Nucl. Agric. Sci., 2019, 33(2): 255-261. | |
21 | BELLSTEDT D U, PIRIE M D, VISSER J C, et al.. A rapid and inexpensive method for the direct PCR amplification of DNA from plants[J]. Am. J. Bot., 2010, 97(7): 65-68. |
22 | 张欣,彭毛,刘波,等.快速试纸条在转基因水稻和大米检测中的应用[J].粮食科技与经济,2015,40(5):48-49. |
ZHANG X, PENG M, LIU B, et al.. Application of fast test strip in the detection of genetically modified paddy and rice[J]. Grain Sci. Technol. Econ., 2015, 40(5): 48-49. | |
23 | 汪世娟. TaCYP78A3基因原核表达及转基因小麦研究[D].陕西杨凌:西北农林科技大学,2017. |
WANG S J. Prokaryotic expression of TACYP78A3 gene and transgenic wheat research[D]. Shaanxi Yangling:Northwest A & F University, 2017. | |
24 | 王园园,王敏,相世刚,等.全球抗除草剂转基因作物转化事件分析[J].农业生物技术学报,2018,26(1):167-175. |
WANG Y Y, WANG M, XIANG S G, et al.. Analysis on the event of global herbicide tolerant transgenic crops[J]. J. Agric. Biotechnol., 2018, 26(1): 167-175. | |
25 | 温莉娴,周菲,邹玉兰.抗除草剂转基因水稻的研究进展[J].植物保护学报,2018,45(5):954-960. |
WEN L X, ZHOU F, ZOU Y L. The research progress on herbicide resistant transgenic rice development[J]. J. Plant Prot., 2018, 45(5): 954-960. | |
26 | 郝梦媛,杭琦,师恭曜.VIGS基因沉默技术在作物基因功能研究中的应用与展望[J].中国农业科技导报,2022,24(1):1-13. |
HAO M Y, HANG Q, SHI G Y. Application and prospect of virus-induced gene silencing in crop gene function research[J]. J. Agric. Sci. Technol., 2022, 24(1): 1-13. | |
27 | JIAN C, HAN R, CHI Q, et al.. Virus-based microRNA silencing and overexpressing in common wheat (Triticum aestivum L.)[J]. Front. Plant Sci., 2017, 8: 500. |
28 | 刘珍银,段郅臻,彭婷,等.基于三角梅的病毒诱导基因沉默体系的建立与优化[J].生物技术通报,2023,39(7):123-130. |
LIU Z Y, DUAN Z Z, PENG T, et al.. Establishment and optimization of virus-induced gene silencing system in Bougainvillea peruviana ‘Thimma’[J]. Biotechnol. Bull., 2023, 39(7): 123-130. | |
29 | 徐幼平,徐秋芳,宋晓毅,等.病毒诱导的基因沉默[J].浙江大学学报(农业与生命科学版),2008,34(2):119-131. |
XU Y P, XU Q F, SONG X Y, et al.. Virus-induced gene silencing[J]. J. Zhejiang Univ. (Agric. Life Sci.), 2008, 34(2): 119-131. | |
30 | 李姣,于宗霞,冯宝民.植物中病毒诱导基因沉默技术的研究与应用进展[J].分子植物育种,2019,17(5):1537-1542. |
LI J, YU Z X, FENG B M. Advances in research and application of virus induced gene silencing in plants[J]. Mol. Plant Breed., 2019, 17(5): 1537-1542. | |
31 | 牟玉莲,阮进学,吴添文,等.猪规模化转基因技术体系构建及其应用[J].中国农业科学,2014,47(21):4211-4223. |
MOU Y L, RUAN J X, WU T W, et al.. Construction and application of a scale transgenic technology system for pigs[J]. Sci. Agric. Sin., 2014, 47(21): 4211-4223. | |
32 | 邓瑞,潘玉朋,杨羽清,等.利用PPT或Kan叶面喷施法建立番茄转基因阳性苗筛选技术研究[J].中国蔬菜,2023(5):56-64. |
DENG R, PAN Y P, YANG Y Q, et al.. Studies on establishing technology for screening transgenic positive tomato seedlings using foliar spraying method PPT or Kan[J]. China Veg., 2023(5):56-64. | |
33 | 张庆霞,魏海蓉,陈新,等.拟南芥转化体筛选中Basta喷洒时期和浓度试验[J].山东农业科学,2013,45(5):96-99. |
ZHANG Q X, WEI H R, CHEN X, et al.. Experiment on basta spraying period and concentration in transgenic Arabidopsis screening[J]. Shandong Agric. Sci., 2013, 45(5): 96-99. | |
34 | SCOFIELD S R, HUANG L, BRANDT A S, et al.. Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway[J]. Plant Physiol., 2005, 138(4): 2165-2173. |
35 | 陈倩楠,王轲,汤沙,等.以抗除草剂Bar基因稳定转化谷子技术研究[J].作物学报,2018,44(10):1423-1432. |
CHEN Q N, WANG K, TANG S, et al.. Use of bar gene for the stable transformation of herbicide-resistant foxtail millet plants[J]. Acta Agron. Sin., 2018, 44(10): 1423-1432. | |
36 | 王清华,刘泽洲,颜冬,等.不同抗生素及除草剂Basta对大葱愈伤组织分化的影响[J].山东农业科学,2020,52(2):50-53. |
WANG Q H, LIU Z Z, YAN D, et al.. Effects of different antibiotics and herbicide basta on differentiation of bunching onion callus[J]. Shandong Agric. Sci., 2020, 52(2): 50-53. | |
37 | 钟婷婷,郭诗芬,卢文斌,等.多重RT-PCR快速检测转基因油菜[J].分子植物育种,2023,21(5):1576-1582. |
ZHONG T T, GUO S F, LU W B, et al.. Multiplex RT-PCR for rapid detection of transgenic rape[J]. Mol. Plant Breed., 2023, 21(5): 1576-1582. |
[1] | 唐桂容, 刘建雨, 于海龙, 宋春艳, 谭琦, 尚晓冬. 根癌农杆菌介导的金针菇遗传转化研究进展[J]. 生物技术进展, 2024, 14(6): 902-910. |
[2] | 王晶, 关海涛, 张晓磊, 王堡槐, 刘宝海, 温洪涛. 农业基因编辑产品检测动态及发展趋势[J]. 生物技术进展, 2024, 14(5): 712-723. |
[3] | 万令飞, 潘文婷, 雍雨婷, 李元帅, 赵悦, 阎新龙. 单细胞转录组测序技术在肝纤维化中的研究进展[J]. 生物技术进展, 2024, 14(5): 793-804. |
[4] | 范宏博, 胡良勇, 胡松青. 幽门螺杆菌ureC和23S rDNA数字PCR检测体系的建立[J]. 生物技术进展, 2024, 14(5): 868-874. |
[5] | 梁丽存, 刘文龙, 刘晓青, 姚斌, 黄火清, 杨浩萌. 化学试剂对塔宾曲霉同源重组效率的影响[J]. 生物技术进展, 2024, 14(4): 586-593. |
[6] | 李凯, 付军, 陈锐, 陈笑芸, 李亮. 基于免扩增高通量测序的转基因定量检测方法研究[J]. 生物技术进展, 2024, 14(4): 610-617. |
[7] | 孙卓婧, 徐道青, 唐巧玲, 王维. 韩国转基因生物安全管理与发展现状[J]. 生物技术进展, 2024, 14(3): 360-367. |
[8] | 席凯飞, 李成杰, 丁艺, 郭维. 利用非同源末端连接缺陷构建拟轮枝镰孢菌的高效基因敲除方法[J]. 生物技术进展, 2024, 14(3): 422-432. |
[9] | 张佳聪, 鲁纪刚. 基于CRISPR/Cas9系统建立新吉富罗非鱼双等位基因敲除技术——以SLC24A5基因为例[J]. 生物技术进展, 2024, 14(3): 442-450. |
[10] | 孙佳琪, 郭嘉, 张闯, 柳青, 王梓钰, 夏涵超, 钱步轩, 赵方方, 王棋, 刘剑锋, 刘相国. 亚磷酸脱氢酶在基因工程改造微生物和植物中的研究进展[J]. 生物技术进展, 2024, 14(2): 173-181. |
[11] | 王晓雪, 纪艺, 余卉茹, 徐俊锋, 彭城, 汪小福, 李玥莹, 陈笑芸. 基于重组酶聚合酶扩增技术的牛源性成分快速检测方法[J]. 生物技术进展, 2024, 14(2): 278-286. |
[12] | 纪艺, 王凯莉, 余卉茹, 赵新, 丁霖, 彭城, 徐俊锋, 陈笑芸. 羊源性基因组DNA标准物质研制[J]. 生物技术进展, 2024, 14(1): 125-132. |
[13] | 赵晨阳, 刘晓梦, 邢亮彬, 李亚丽, 赵立新, 艾连峰, 哈婧. 基于气相色谱-质谱法测定塞来昔布中磺酸酯类基因毒性杂质的残留量[J]. 生物技术进展, 2024, 14(1): 85-93. |
[14] | 张安红, 肖娟丽, 赵战胜, 王志安, 刘圆, 罗晓丽. 转基因抗虫棉研究进展[J]. 生物技术进展, 2023, 13(5): 657-662. |
[15] | 高应瑞, 康福忠, 孟铁健, 刘珂飞, 王调调, 陈金艳, 孙彤. 基于全基因组测序的丁酸梭菌安全性评价[J]. 生物技术进展, 2023, 13(5): 755-759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部