1 |
DIEKMAN M A, GREEN M L. Mycotoxins and reproduction in domestic livestock[J]. J. Anim. Sci., 1992, 70(5): 1615-1627.
|
2 |
SOLHAUG A, ERIKSEN G S, HOLME J A. Mechanisms of action and toxicity of the mycotoxin alternariol: a review[J]. Basic Clin. Pharmacol. Toxicol., 2016, 119(6): 533-539.
|
3 |
RAISTRICK H, STICKINGS C E, THOMAS R. Studies in the biochemistry of microorganisms. 90. Alternariol and alternariol monomethyl ether, metabolic products of Alternaria tenuis [J]. Biochem. J., 1953, 55(3): 421-433.
|
4 |
FRIZZELL C, NDOSSI D, KALAYOU S, et al.. An in vitro investigation of endocrine disrupting effects of the mycotoxin alternariol[J]. Toxicol. Appl. Pharmacol., 2013, 271(1): 64-71.
|
5 |
LI F Q, YOSHIZAWA T. Alternaria mycotoxins in weathered wheat from China[J]. J. Agric. Food Chem., 2000, 48(7): 2920-2924.
|
6 |
MEENA M, ZEHRA A, DUBEY M K, et al.. Comparative evaluation of biochemical changes in tomato (Lycopersicon esculentum mill.) infected by Alternaria alternata and its toxic metabolites (TeA, aoh, and ame)[J/OL]. Front. Plant Sci., 2016, 7: 1408[2024-09-25]. .
|
7 |
SOLHAUG A, VINES L L, IVANOVA L, et al.. Mechanisms involved in alternariol-induced cell cycle arrest [J]. Mutation Res. Fundam. Mol. Mechan. Mutagen., 2012, 738: 1-11.
|
8 |
BENSASSI F, GALLERNE C, DEIN O S, et al.. Mechanism of Alternariol monomethyl ether-induced mitochondrial apoptosis in human colon carcinoma cells[J]. Toxicology, 2011, 290(2/3): 230-240.
|
9 |
WANG S, GAO H, WEI Z, et al.. Shortened and multivalent aptamers for ultrasensitive and rapid detection of alternariol in wheat using optical waveguide sensors[J/OL]. Biosens. Bioelectron., 2022, 196: 113702[2024-09-25]. .
|
10 |
VIÑAS I, BONET J, SANCHIS V. Incidence and mycotoxin production by Alternaria tenuis in decayed apples[J]. Lett. Appl. Microbiol., 1992, 14(6): 284-287.
|
11 |
CHOOI Y H, MURIA-GONZALEZ M J, MEAD O L, et al.. SnPKS19 encodes the polyketide synthase for alternariol mycotoxin biosynthesis in the wheat pathogen Parastagonospora nodorum [J]. Appl. Environ. Microbiol., 2015, 81(16): 5309-5317.
|
12 |
BRZONKALIK K, HERRLING T, SYLDATK C, et al.. The influence of different nitrogen and carbon sources on mycotoxin production in Alternaria alternata [J]. Int. J. Food Microbiol., 2011, 147(2): 120-126.
|
13 |
HU S R, DOU X W, ZHANG L, et al.. Rapid detection of aflatoxin B1 in medicinal materials of Radix and rhizome by gold immunochromatographic assay[J]. Toxicon, 2018, 150: 144-150.
|
14 |
WU Y H, ZHOU Y F, HUANG H, et al.. Engineered gold nanoparticles as multicolor labels for simultaneous multi-mycotoxin detection on the immunochromatographic test strip nanosensor[J]. Sens. Actuat. B Chem., 2020, 316: 128107.
|
15 |
杨敏,褚厚娟,朱龙佼,等.银离子比色检测技术研究进展[J].生物技术进展,2024,14(1):111-119.
|
|
YANG M, CHU H, ZHU L, et al.. Research progress on silver Ion colorimetric detection[J]. Curr. Biotechnol., 2024, 14(1): 111-119.
|
16 |
ELLINGTON A D, SZOSTAK J W. In vitro selection of RNA molecules that bind specific ligands[J]. Nature, 1990, 346: 818-822.
|
17 |
DUNN M R, JIMENEZ R M, CHAPUT J C. Analysis of aptamer discovery and technology[J]. Nat. Rev. Chem., 2017, 1:76.
|
18 |
ZHAO L P, LI L S, ZHU C, et al.. pH-responsive polymer assisted aptamer functionalized magnetic nanoparticles for specific recognition and adsorption of proteins[J]. Anal. Chim. Acta, 2020, 1097: 161-168.
|
19 |
NGUYEN V T, KWON Y S, GU M B. Aptamer-based environmental biosensors for small molecule contaminants[J]. Curr. Opin. Biotechnol., 2017, 45: 15-23.
|
20 |
ZHANG L P, LI L. Colorimetric thrombin assay using aptamer-functionalized gold nanoparticles acting as a peroxidase mimetic[J]. Microchim. Acta, 2016, 183(1): 485-490.
|
21 |
SHIM W B, KIM M J, MUN H, et al.. An aptamer-based dipstick assay for the rapid and simple detection of aflatoxin B1[J]. Biosens. Bioelectron., 2014, 62: 288-294.
|
22 |
MIRIAM J R, MOHAMMAD S E S, ABDULAZIZ S B, et al.. Advances in aptamers-based lateral flow assays[J]. Trends Anal. Chem., 2017, 97:385-398.
|
23 |
ZHOU W, KONG W, DOU X, et al.. An aptamer based lateral flow strip for on-site rapid detection of ochratoxin A in Astragalus membranaceus [J]. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2016, 1022: 102-108.
|
24 |
ZHANG G, ZHU C, HUANG Y, et al.. A lateral flow strip based aptasensor for detection of ochratoxin A in corn samples[J/OL]. Molecules, 2018, 23(2): E291[2024-09-25]. .
|
25 |
MAJDINASAB M, BADEA M, MARTY J L. Aptamer-based lateral flow assays: current trends in clinical diagnostic rapid tests[J]. Pharmaceuticals, 2022, 15(1): 90.
|
26 |
WU S J, LIU L H, DUAN N, et al.. Aptamer-based lateral flow test strip for rapid detection of Zearalenone in corn samples[J/OL]. J. Agric. Food Chem., 2018, 66(8): 1949-1954.
|
27 |
LIU Y, LIU D, CUI S, et al.. Design of a signal-amplified aptamer-based lateral flow test strip for the rapid detection of ochratoxin A in red wine[J]. Foods (basel switz.), 2022, 11(11): 1598.
|
28 |
NGUYEN A T V, DUONG B T, PARK H, et al.. Development of a peptide aptamer pair-linked rapid fluorescent diagnostic system for Zika virus detection[J]. Biosens. Bioelectron., 2022, 197: 113768[2024-09-25]. .
|
29 |
SACHAN A, ILGU M, KEMPEMA A, et al.. Specificity and ligand affinities of the cocaine aptamer: impact of structural features and physiological NaCl[J]. Anal. Chem., 2016, 88(15): 7715-7723.
|
30 |
WANG J, XIAO Y. Types and concentrations of metal ions affect local structure and dynamics of RNA[J/OL]. Phys. Rev. E, 2016, 94: 040401[2024-09-25]..
|
31 |
ZHAO L P, LI L S, LIU Z, et al.. Aptamer functionalized magnetic hydrophobic polymer with synergetic effect for enhanced adsorption of alternariol from wheat[J/OL]. Food Chem., 2024, 435: 137556[2024-09-25]. .
|
32 |
SAHA D, FETZNER R, BURKHARDT B, et al.. Identification of a polyketide synthase required for alternariol (AOH) and alternariol-9-methyl ether (AME) formation in Alternaria alternata [J/OL]. PLoS One, 2012, 7(7): e40564[2024-09-25]..
|
33 |
许文涛,杨敏,朱龙佼,等.功能核酸概念的内涵与外延[J].生物技术进展,2021,11(4):446-454.
|
|
XU W, YANG M, ZHU L, et al.. The connotation and extension of the functional nucleic acid[J]. Curr. Biotechnol., 2021, 11(4): 446-454.
|
34 |
康帅帅,王瑞安,许文涛,等.磁适配体生物传感器[J].生物技术进展,2023,13(3):339-344.
|
|
KANG S, WANG R, XU W, et al.. Magnetic aptamer biosensors[J]. Curr. Biotechnol., 2023, 13(3): 339-344.
|
35 |
陈可仁,汪未申,朱龙佼,等.核酸自组装纳米递送载体的研究进展[J].生物技术进展,2022,12(3):352-357.
|
|
CHEN K, WANG W, ZHU L, et al.. Research progress of nucleic acid⁃based self⁃assembling nanocarriers[J]. Curr. Biotechnol., 2022, 12(3): 352-357.
|
36 |
吴一凡,林晟豪,许文涛.小分子靶标的核糖开关生物传感器研究进展[J].生物技术进展,2022,12(2):168-175.
|
|
WU Y, LIN S, XU W. Research progress of riboswitch biosensors for small molecule target[J]. Curr. Biotechnol., 2022, 12(2): 168-175.
|
37 |
ZHAO L P, LI L S, ZHAO Y, et al.. Aptamer-based point-of-care-testing for small molecule targets: from aptamers to aptasensors, devices and applications[J/OL]. Trac Trends Anal. Chem., 2023, 169: 117408[2024-10-15]. .
|
38 |
GUO X, WEN F, ZHENG N, et al.. Aptamer-based biosensor for detection of mycotoxins[J/OL]. Front. Chem., 2020, 8: 195[2024-10-15]. .
|
39 |
GOPINATH S C, LAKSHMIPRIYA T, CHEN Y, et al.. Aptamer-based ‘point-of-care testing’[J]. Biotechnol. Adv., 2016, 34(3): 198-208.
|
40 |
FAN Y, LI J, AMIN K, et al.. Advances in aptamers,and application of mycotoxins detection: a review[J/OL]. Food Res. Int., 2023, 170: 113022[2024-10-15]. .
|