生物技术进展 ›› 2024, Vol. 14 ›› Issue (6): 980-992.DOI: 10.19586/j.2095-2341.2024.0084
李彩华(), 赵彦坤, 李占坤, 单子龙, 曹巧, 马亮, 王飞, 高振贤(
)
收稿日期:
2024-04-15
接受日期:
2024-05-20
出版日期:
2024-11-25
发布日期:
2024-12-27
通讯作者:
高振贤
作者简介:
李彩华 E-mail: licaihua415@126.com;
基金资助:
Caihua LI(), Yankun ZHAO, Zhankun LI, Zilong SHAN, Qiao CAO, Liang MA, Fei WANG, Zhenxian GAO(
)
Received:
2024-04-15
Accepted:
2024-05-20
Online:
2024-11-25
Published:
2024-12-27
Contact:
Zhenxian GAO
摘要:
小麦是世界上种植最广泛的作物之一,其株高是优化收获指数、实现粮食产量最大化的重要因素。系统综述了小麦矮秆(reduced height,Rht)基因的分类、多效性特征,以及这些基因功能标记在小麦育种中的应用,讨论了目前已发现的26个与小麦株高密切相关的基因对赤霉素的敏感性及其研究进展,展望了采用各种技术手段挖掘新的矮秆基因的可行性及其在小麦遗传育种中的潜力,以期为提高小麦产量研究提供理论参考。
中图分类号:
李彩华, 赵彦坤, 李占坤, 单子龙, 曹巧, 马亮, 王飞, 高振贤. 小麦矮秆基因研究进展[J]. 生物技术进展, 2024, 14(6): 980-992.
Caihua LI, Yankun ZHAO, Zhankun LI, Zilong SHAN, Qiao CAO, Liang MA, Fei WANG, Zhenxian GAO. Research Progress on Rht Genes in Wheat[J]. Current Biotechnology, 2024, 14(6): 980-992.
基因 | 等位变异 | 染色体 | 核苷酸变化a | 效应b | 参考文献 |
---|---|---|---|---|---|
Rht-A1 | Rht-A1a | 4A | 野生型 | - | [ |
Rht-A1b | 4A | G994A | G332S | [ | |
Rht-A1c | 4A | C1430A | S477Y | [ | |
Rht-A1d | 4A | G817A,C818T | A273I | [ | |
Rht-A1e | 4A | A(-33)G | 5′-非编码 | [ | |
Rht-A1f | 4A | C420G | P140= | [ | |
Rht-A1g | 4A | T565A | S189T | [ | |
Rht-B1 | Rht-B1a | 4B | 野生型 | - | [ |
Rht-B1b(Rht1) | 4B | C190T | Q64* | [ | |
Rht-B1c | 4B | G43C, G75A, Veju插入 | G15R, M25I, 30 K49后添加230个残留物 | [ | |
Rht-B1d | 4B | C190T | Q64* | [ | |
Rht-B1e | 4B | A181T | K61* | [ | |
Rht-B1f | 4B | - | - | [ | |
Rht-B1g | 4B | - | - | [ | |
Rht-B1h | 4B | G43C、G75A、A723G、A1761C、 T1877: | G15R、M25I、A241=、A587= | [ |
表1 Rht-1位点基因信息
Table 1 The information of Rht-1 locus
基因 | 等位变异 | 染色体 | 核苷酸变化a | 效应b | 参考文献 |
---|---|---|---|---|---|
Rht-A1 | Rht-A1a | 4A | 野生型 | - | [ |
Rht-A1b | 4A | G994A | G332S | [ | |
Rht-A1c | 4A | C1430A | S477Y | [ | |
Rht-A1d | 4A | G817A,C818T | A273I | [ | |
Rht-A1e | 4A | A(-33)G | 5′-非编码 | [ | |
Rht-A1f | 4A | C420G | P140= | [ | |
Rht-A1g | 4A | T565A | S189T | [ | |
Rht-B1 | Rht-B1a | 4B | 野生型 | - | [ |
Rht-B1b(Rht1) | 4B | C190T | Q64* | [ | |
Rht-B1c | 4B | G43C, G75A, Veju插入 | G15R, M25I, 30 K49后添加230个残留物 | [ | |
Rht-B1d | 4B | C190T | Q64* | [ | |
Rht-B1e | 4B | A181T | K61* | [ | |
Rht-B1f | 4B | - | - | [ | |
Rht-B1g | 4B | - | - | [ | |
Rht-B1h | 4B | G43C、G75A、A723G、A1761C、 T1877: | G15R、M25I、A241=、A587= | [ |
基因 | 染色体 | 编码基因 | 突变来源 | 是否GA敏感 | 是否克隆 | 克隆方法 | 参考文献 |
---|---|---|---|---|---|---|---|
Rht4 | 2BL | - | Burt 经伽马射线辐射 | 是 | 否 | [ | |
Rht5 | 3BS | - | Marfed经EMS诱变 | 是 | 是 | 图位克隆 | [ |
Rht8 | 2DS | RNase H-like蛋白 | 京411经EMS诱变混合群体分离分析 | 是 | 是 | 混合群体分离分析 | [ |
Rht9 | 5AL或者7B | - | Mai 18 和 Mara重组自交系 | 是 | 否 | [ | |
Rht12 | 5A | GA2-b-双加氧酶(GA2oxA13) | γ射线诱变获得Karcagi 522M7K | 是 | 是 | 混池转录组测序 | [ |
Rht13 | 7BL | NB-LRR | ‘Chuanmai 18’和‘Magnif M1’重组自交系 | 是 | 是 | 图位克隆结合测序 | [ |
Rht14 | 6AS | - | 栽培种 | 是 | 否 | - | [ |
Rht15 | 未知 | - | 经EMS诱变获得‘Durox’ | - | 否 | - | [ |
Rht17 | 未知 | - | ‘Chirs’经DES诱变 | - | 否 | - | [ |
Rht18 | 6A | GA2oxA9 | ‘Icaro’经叠氮化钠诱变 | 是 | 是 | 图位克隆结合测序 | [ |
Rht19 | 未知 | - | ‘Vic’经EMS诱变 | - | 否 | - | [ |
Rht20 | 未知 | - | ‘Burt’经γ-射线诱变 | - | 否 | - | [ |
Rht22 | 7AS | - | dwarf Polish wheat和 JAM重组自交系 | - | 否 | 图位克隆 | [ |
Rht23 | 5DL | AP2 转录因子 | NAUH164(‘苏麦3’经EMS诱变) | - | 是 | 图位克隆 | [ |
Rht24 | 6A | GA2oxA9 | ‘京冬8号’和‘矮抗58’重组自交系 | 是 | 是 | 图位克隆 | [ |
Rht25 | 6AS | PLATZ-A1 | ‘UC1110’和‘PI610750’重组自交系 | 是 | 是 | 图位克隆 | [ |
Rht26 | 3DL | - | ‘中麦175’和‘轮选987’重组自交系 | - | 是 | 图位克隆 | [ |
表2 GA敏感矮杆基因及其他矮杆基因
Table 2 GA sensitive dwarf genes and other dwarf genes
基因 | 染色体 | 编码基因 | 突变来源 | 是否GA敏感 | 是否克隆 | 克隆方法 | 参考文献 |
---|---|---|---|---|---|---|---|
Rht4 | 2BL | - | Burt 经伽马射线辐射 | 是 | 否 | [ | |
Rht5 | 3BS | - | Marfed经EMS诱变 | 是 | 是 | 图位克隆 | [ |
Rht8 | 2DS | RNase H-like蛋白 | 京411经EMS诱变混合群体分离分析 | 是 | 是 | 混合群体分离分析 | [ |
Rht9 | 5AL或者7B | - | Mai 18 和 Mara重组自交系 | 是 | 否 | [ | |
Rht12 | 5A | GA2-b-双加氧酶(GA2oxA13) | γ射线诱变获得Karcagi 522M7K | 是 | 是 | 混池转录组测序 | [ |
Rht13 | 7BL | NB-LRR | ‘Chuanmai 18’和‘Magnif M1’重组自交系 | 是 | 是 | 图位克隆结合测序 | [ |
Rht14 | 6AS | - | 栽培种 | 是 | 否 | - | [ |
Rht15 | 未知 | - | 经EMS诱变获得‘Durox’ | - | 否 | - | [ |
Rht17 | 未知 | - | ‘Chirs’经DES诱变 | - | 否 | - | [ |
Rht18 | 6A | GA2oxA9 | ‘Icaro’经叠氮化钠诱变 | 是 | 是 | 图位克隆结合测序 | [ |
Rht19 | 未知 | - | ‘Vic’经EMS诱变 | - | 否 | - | [ |
Rht20 | 未知 | - | ‘Burt’经γ-射线诱变 | - | 否 | - | [ |
Rht22 | 7AS | - | dwarf Polish wheat和 JAM重组自交系 | - | 否 | 图位克隆 | [ |
Rht23 | 5DL | AP2 转录因子 | NAUH164(‘苏麦3’经EMS诱变) | - | 是 | 图位克隆 | [ |
Rht24 | 6A | GA2oxA9 | ‘京冬8号’和‘矮抗58’重组自交系 | 是 | 是 | 图位克隆 | [ |
Rht25 | 6AS | PLATZ-A1 | ‘UC1110’和‘PI610750’重组自交系 | 是 | 是 | 图位克隆 | [ |
Rht26 | 3DL | - | ‘中麦175’和‘轮选987’重组自交系 | - | 是 | 图位克隆 | [ |
基因 | 等位基因 | 标记 | 染色体 | 序列(5′→3′) | 大小/bp | 退火温度/℃ | 参考文献 |
---|---|---|---|---|---|---|---|
Rht-B1 | Rht-B1a | BF-WR1 | 4B | 5′-GGTAGGGAGGCGAGAGGCGAG-3′ 5′-CATCCCCATGGCCATCTCGAGCTG-3′ | 237 | 63 | [ |
Rht-B1b | BF-MR1 | 5′-GGTAGGGAGGCGAGAGGCGAG-3′ 5′-CATCCCCATGGCCATCTCGAGCTA-3′ | 237 | 63 | [ | ||
Rht-D1 | Rht-D1a | DF2-WR2 | 4D | 5′-GGCAAGCAAAAGCTTCGCG-3′ 5′-GGCCATCTCGAGCTGCAC-3′ | 264 | 63 | [ |
Rht-D1b | DF-MR2 | 5′-CGCGCAATTATTGGCCAGAGATAG-3′ 5′-CCCCATGGCCATCTCGAGCTGCTA-3′ | 254 | 63 | [ | ||
Rht 4 | WMC317 | 2BL | 5′-TGCTAGCAATGCTCCGGGTAAC-3′ 5′-TCACGAAACCTTTTCCTCCTCC-3′ | 170 | 61 | [ | |
Rht 5 | BARC102 | 3BS | 5′-GGAGAGGACCTGCTAAAATCGAAGACA-3′ 5′-GCGTTTACGGATCAGTGTTGGAGA-3′ | 200 | 52 | [ | |
Rht 8 | Xgwm261 | 2DS | 5′-CTCCCTGTACGCCTAAGGC-3′ 5′-CTCGCGCTACTAGCCATTG-3′ | 192 | 61 | [ | |
Rht 9 | BARC151 | 5′-TGAGGAAAATGTCTCTATAGCATCC-3′ 5′-CGCATAAACACCTTCGCTCTTCCACTC-3′ | 220 | 55 | [ | ||
Rht 12 | WMC410 | 5AL | 5′-CGCATAAACACCTTCGCTCTTCCACTC-3′ 5′-CGCATAAACACCTTCGCTCTTCCACTC-3′ | 114 | 61 | [ | |
Rht 13 | WMS577 | 7BS | 5′-ATGGCATAATTTGGTGAAATTG-3′ 5′-TGTTTCAAGCCCAACTTCTATT-3′ | 130 | 55 | [ |
表3 用于检测小麦矮秆基因的分子标记及其引物
Table 3 Molecular markers and primers for detecting wheat dwarf genes
基因 | 等位基因 | 标记 | 染色体 | 序列(5′→3′) | 大小/bp | 退火温度/℃ | 参考文献 |
---|---|---|---|---|---|---|---|
Rht-B1 | Rht-B1a | BF-WR1 | 4B | 5′-GGTAGGGAGGCGAGAGGCGAG-3′ 5′-CATCCCCATGGCCATCTCGAGCTG-3′ | 237 | 63 | [ |
Rht-B1b | BF-MR1 | 5′-GGTAGGGAGGCGAGAGGCGAG-3′ 5′-CATCCCCATGGCCATCTCGAGCTA-3′ | 237 | 63 | [ | ||
Rht-D1 | Rht-D1a | DF2-WR2 | 4D | 5′-GGCAAGCAAAAGCTTCGCG-3′ 5′-GGCCATCTCGAGCTGCAC-3′ | 264 | 63 | [ |
Rht-D1b | DF-MR2 | 5′-CGCGCAATTATTGGCCAGAGATAG-3′ 5′-CCCCATGGCCATCTCGAGCTGCTA-3′ | 254 | 63 | [ | ||
Rht 4 | WMC317 | 2BL | 5′-TGCTAGCAATGCTCCGGGTAAC-3′ 5′-TCACGAAACCTTTTCCTCCTCC-3′ | 170 | 61 | [ | |
Rht 5 | BARC102 | 3BS | 5′-GGAGAGGACCTGCTAAAATCGAAGACA-3′ 5′-GCGTTTACGGATCAGTGTTGGAGA-3′ | 200 | 52 | [ | |
Rht 8 | Xgwm261 | 2DS | 5′-CTCCCTGTACGCCTAAGGC-3′ 5′-CTCGCGCTACTAGCCATTG-3′ | 192 | 61 | [ | |
Rht 9 | BARC151 | 5′-TGAGGAAAATGTCTCTATAGCATCC-3′ 5′-CGCATAAACACCTTCGCTCTTCCACTC-3′ | 220 | 55 | [ | ||
Rht 12 | WMC410 | 5AL | 5′-CGCATAAACACCTTCGCTCTTCCACTC-3′ 5′-CGCATAAACACCTTCGCTCTTCCACTC-3′ | 114 | 61 | [ | |
Rht 13 | WMS577 | 7BS | 5′-ATGGCATAATTTGGTGAAATTG-3′ 5′-TGTTTCAAGCCCAACTTCTATT-3′ | 130 | 55 | [ |
1 | REYNOLDS M, FOULKES J, FURBANK R, et al.. Achieving yield gains in wheat[J]. Plant Cell Environ., 2012, 35(10): 1799-1823. |
2 | CASEBOW R, HADLEY C, UPPAL R, et al.. Reduced height (rht) alleles affect wheat grain quality[J/OL]. PLoS ONE, 2016, 11(5): e0156056[2024-07-25]. . |
3 | LI S, TIAN Y, WU K, et al.. Modulating plant growth-metabolism coordination for sustainable agriculture[J]. Nature, 2018, 560: 595-600. |
4 | HEDDEN P. The genes of the Green Revolution[J]. Trends Genet., 2003, 19(1): 5-9. |
5 | BOROJEVIC K, BOROJEVIC K. The transfer and history of “reduced height genes” (rht) in wheat from Japan to Europe[J]. J. Hered., 2005, 96(4): 455-459. |
6 | GUO B, JIN X, CHEN J, et al.. ATP-dependent DNA helicase (TaDHL), a novel reduced-height (Rht) gene in wheat[J/OL]. Genes, 2022, 13(6): 979[2024-07-25]. . |
7 | SONG J, LI L, LIU B, et al.. Fine mapping of reduced height locus RHT26 in common wheat[J/OL]. Theor. Appl. Genet., 2023, 136(3): 62[2024-07-25]. . |
8 | XIONG H, ZHOU C, FU M, et al.. Cloning and functional characterization of Rht8, a “Green Revolution” replacement gene in wheat[J]. Mol. Plant, 2022, 15(3): 373-376. |
9 | TIAN X, XIA X, XU D, et al.. Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat[J]. New Phytol., 2022, 233(2): 738-750. |
10 | SI X, WANG W, WANG K, et al.. A sheathed spike gene, TaWUS-like inhibits stem elongation in common wheat by regulating hormone levels[J/OL]. Int. J. Mol. Sci., 2021, 22(20): 11210[2024-07-25]. . |
11 | ROSS J J, MURFET I C, REID J B. Gibberellin mutants[J]. Physiol. Plantarum, 1997, 100 (3): 550-560. |
12 | XUE H, GAO X, HE P, et al.. Origin, evolution, and molecular function of DELLA proteins in plants[J]. Crop J., 2022, 10(2): 287-299. |
13 | PEARCE S, SAVILLE R, VAUGHAN S P, et al.. Molecular characterization of rht-1 dwarfing genes in hexaploid wheat[J]. Plant Physiol., 2011, 157(4): 1820-1831. |
14 | PENG J, RICHARDS D E, HARTLEY N M, et al.. 'Green Revolution' genes encode mutant gibberellin response modulators[J]. Nature, 1999, 400: 256-261. |
15 | MO Y, PEARCE S, DUBCOVSKY J. Phenotypic and transcriptomic characterization of a wheat tall mutant carrying an induced mutation in the C-terminal PFYRE motif of RHT-B 1b[J/OL]. BMC Plant Biol., 2018, 18(1): 253[2024-07-25]. . |
16 | VAN DE VELDE K, THOMAS S G, HEYSE F, et al.. N-terminal truncated RHT-1 proteins generated by translational reinitiation cause semi-dwarfing of wheat Green Revolution alleles[J]. Mol. Plant, 2021, 14(4): 679-687. |
17 | LI A, YANG W, LOU X, et al.. Novel natural allelic variations at the Rht-1 loci in wheat[J]. J. Integr. Plant Biol., 2013, 55(11): 1026-1037. |
18 | WU J, KONG X, WAN J, et al.. Dominant and pleiotropic effects of a GAI gene in wheat results from a lack of interaction between DELLA and GID1[J]. Plant Physiol., 2011, 157(4): 2120-2130. |
19 | LI A, YANG W, GUO X, et al.. Isolation of a gibberellin-insensitive dwarfing gene, Rht-B1e, and development of an allele-specific PCR marker[J]. Mol. Breed., 2012, 30(3): 1443-1451. |
20 | BÖRNER A, PLASCHKE J, KORZUN V, et al.. The relationships between the dwarfing genes of wheat and rye[J]. Euphytica, 1996, 89(1): 69-75. |
21 | GALE M D, YOUSSEFIAN S. Dwarfing genes in wheat. In: Russell GE(ed) Progress in Plant Breeding[M]. London: Butterworths, 1985. |
22 | LI A, YANG W, LI S, et al.. Molecular characterization of three GIBBERELLIN-INSENSITIVE DWARF1 homologous genes in hexaploid wheat[J]. J. Plant Physiol., 2013, 170(4): 432-443. |
23 | WANG Y, CHEN L, DU Y, et al.. Genetic effect of dwarfing gene Rht13 compared with Rht-D1b on plant height and some agronomic traits in common wheat (Triticum aestivum L.)[J]. Field Crops Res., 2014, 162: 39-47. |
24 | WEN W, DENG Q, JIA H, et al.. Sequence variations of the partially dominant DELLA gene Rht-B1c in wheat and their functional impacts[J]. J. Exp. Bot., 2013, 64(11): 3299-3312. |
25 | LU Q, LU S, WANG M, et al.. The exogenous GA3 greatly affected the grain-filling process of semi-dwarf gene Rht4 in bread wheat[J/OL]. Physiol. Plant., 2022, 174(3): e13725[2024-07-25]. . |
26 | CHAI L, XIN M, DONG C, et al.. A natural variation in ribonuclease H-like gene underlies Rht8 to confer “Green Revolution” trait in wheat[J]. Mol. Plant, 2022, 15(3): 377-380. |
27 | BUSS W, FORD B A, FOO E, et al.. Overgrowth mutants determine the causal role of GA2 oxidase A13 in Rht12 dwarfism of wheat[J]. J. Exp. Bot., 2020, 71 (22): 7171-7178. |
28 | BORRILL P, MAGO R, XU T, et al.. An autoactive NB-LRR gene causes Rht13 dwarfism in wheat[J/OL]. Proc. Natl. Acad. Sci. USA, 2022, 119(48): e2209875119[2024-07-25]. . |
29 | FORD B A, FOO E, SHARWOOD R, et al.. Rht18 semidwarfism in wheat is due to increased GA2-oxidase A9 expression and reduced GA content[J]. Plant Physiol., 2018, 177(1): 168-180. |
30 | ZHANG J, LI C, ZHANG W, et al.. Wheat plant height locus RHT 25 encodes a PLATZ transcription factor that interacts with DELLA (RHT1)[J/OL]. Proc. Natl. Acad. Sci. USA, 2023, 120(19): e2300203120[2024-07-25]. . |
31 | CUI C, LU Q, ZHAO Z, et al.. The fine mapping of dwarf gene Rht5 in bread wheat and its effects on plant height and main agronomic traits[J/OL]. Planta, 2022, 255(6): 114[2024-07-25]. . |
32 | ELLIS M H, REBETZKE G J, AZANZA F, et al.. Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat[J]. Theor. Appl. Genet., 2005, 111(3): 423-430. |
33 | WORLAND A J, SAYERS E J, RNER A B. The genetics and breeding potential of Rht12, a dominant dwarfing gene in wheat[J]. Plant Breed., 2010, 113 (3): 187-196. |
34 | HAQUE M A, MARTINEK P, WATANABE N, et al.. Genetic mapping of gibberellic acid-sensitive genes for semi-dwarfism in durum wheat[J]. Cereal Res. Commun., 2011, 39(2): 171-178. |
35 | MOHAN A, GRANT N P, SCHILLINGER W F, et al.. Characterizing reduced height wheat mutants for traits affecting abiotic stress and photosynthesis during seedling growth[J]. Physiol. Plant., 2021, 172(1): 233-246. |
36 | WANG C, BAO Y, YAO Q, et al.. Fine mapping of the reduced height gene Rht22 in tetraploid wheat Landrace Jianyangailanmai (Triticum turgidum L.)[J]. Theor. Appl. Genet., 2022, 135(10): 3643-3660. |
37 | ZHAO K, XIAO J, LIU Y, et al.. Rht23 (5Dq') likely encodes a Q homeologue with pleiotropic effects on plant height and spike compactness[J]. Theor. Appl. Genet., 2018, 131(9): 1825-1834. |
38 | TIAN X, WEN W, XIE L, et al.. Molecular mapping of reduced plant height gene Rht24 in bread wheat[J/OL]. Plant Sci., 2017, 8: 1379[2024-07-25]. . |
39 | WORLAND A J, SAYERS E J, KORZUN V. Allelic variation at the dwarfing gene Rht8 locus and its significance in international breeding programmes[J]. Euphytica, 2001, 119 (1-2):157-161. |
40 | WORLAND A J, KORZUN V, RÖDER M S, et al.. Genetic analysis of the dwarfing gene Rht8 in wheat. Part Ⅱ. The distribution and adaptive significance of allelic variants at the Rht8 locus of wheat as revealed by microsatellite screening[J]. Theor. Appl. Genet., 1998, 96(8): 1110-1120. |
41 | SUN L, YANG W, LI Y, et al.. A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line[J]. Plant J., 2019, 97(5): 887-900. |
42 | ELLIS M H, REBETZKE G J, CHANDLER P, et al.. The effect of different height reducing genes on the early growth of wheat[J]. Funct. Plant Biol., 2004, 31(6): 583-589. |
43 | GRANT N P, MOHAN A, SANDHU D, et al.. Inheritance and genetic mapping of the reduced height (Rht18) gene in wheat[J/OL]. Plants, 2018, 7(3): E58[2024-07-25]. . |
44 | WÜRSCHUM T, LANGER S M, LONGIN C F H, et al.. A modern Green Revolution gene for reduced height in wheat[J]. Plant J., 2017, 92(5): 892-903. |
45 | DUAN S, CUI C, CHEN L, et al.. Fine mapping and candidate gene analysis of dwarf gene Rht14 in durum wheat (Triticum durum)[J]. Funct. Integr. Genom., 2022, 22(2): 141-152. |
46 | REBETZKE G J, ELLIS M H, BONNETT D G, et al.. The Rht13 dwarfing gene reduces peduncle length and plant height to increase grain number and yield of wheat[J]. Field Crops Res., 2011, 124(3): 323-331. |
47 | DIVASHUK M G, KROUPIN P Y, SHIRNIN S Y, et al.. Effect of gibberellin responsive reduced height allele Rht13 on agronomic traits in spring bread wheat in field experiment in non-black soil zone[J]. Agronomy, 2020, 10 (7): 927-937. |
48 | WANG Y, DU Y, YANG Z, et al.. Comparing the effects of GA-responsive dwarfing genes Rht13 and Rht8 on plant height and some agronomic traits in common wheat[J]. Field Crops Res., 2015, 179: 35-43. |
49 | MO Y, VANZETTI L S, HALE I, et al.. Identification and characterization of Rht25, a locus on chromosome arm 6AS affecting wheat plant height, heading time, and spike development[J]. Theor. Appl. Genet., 2018, 131(10): 2021-2035. |
50 | DU Y, CHEN L, WANG Y, et al.. The combination of dwarfing genes Rht4 and Rht8 reduced plant height, improved yield traits of rainfed bread wheat (Triticum aestivum L.)[J]. Field Crops Res., 2018, 215: 149-155. |
51 | LIU Y, ZHANG J, HU Y G, et al.. Dwarfing genes Rht4 and Rht-Blb affect plant height and key agronomic traits in common wheat under two water regimes[J]. Fiele Crop. Res., 2017, 204: 242-248. |
52 | REBETZKE G J, ELLIS M H, BONNETT D G, et al.. Height reduction and agronomic performance for selected gibberellin-responsive dwarfing genes in bread wheat (Triticum aestivum L.)[J]. Field Crops Res., 2012, 126: 87-96. |
53 | CHEN L, YANG Y, CUI C, et al.. Effects of Vrn-B1 and Ppd-D1 on developmental and agronomic traits in Rht5 dwarf plants of bread wheat[J]. Field Crops Res., 2018, 219: 24-32. |
54 | CHEN W, SUN D, LI R, et al.. Mining the stable quantitative trait loci for agronomic traits in wheat (Triticum aestivum L.) based on an introgression line population[J/OL]. BMC Plant Biol., 2020, 20(1): 275[2024-07-25]. . |
55 | VIKHE P, VENKATESAN S, CHAVAN A, et al.. Mapping of dwarfing gene Rht14 in durum wheat and its effect on seedling vigor, internode length and plant height[J]. Crop J., 2019, 7(2): 187-197. |
56 | YANG Z, ZHENG J, LIU C, et al.. Effects of the GA-responsive dwarfing gene Rht18 from tetraploid wheat on agronomic traits of common wheat[J]. Field Crops Res., 2015, 183: 92-101. |
57 | ZHANG Z, BELCRAM H, GORNICKI P, et al.. Duplication and partitioning in evolution and function of homoeologous Q loci governing domestication characters in polyploid wheat[J]. Proc. Natl. Acad. Sci. USA, 2011, 108(46): 18737-18742. |
58 | GOODING M J, CANNON N D, THOMPSON A J, et al.. Quality and value of organic grain from contrasting breadmaking wheat varieties and near isogenic lines differing in dwarfing genes[J]. Biol. Agric. Hortic., 1999, 16 (4): 335-350. |
59 | GOODING M J, ADDISU M, UPPAL R K, et al.. Effect of wheat dwarfing genes on nitrogen-use efficiency[J]. J. Agric. Sci-Cambridge, 2012, 150(1): 3-22. |
60 | VELU G, SINGH R P, HUERTA J, et al.. Genetic impact of Rht dwarfing genes on grain micronutrients concentration in wheat[J]. Field Crops Res., 2017, 214: 373-377. |
61 | CRESPO-HERRERA L A, VELU G, SINGH R P. Quantitative trait loci mapping reveals pleiotropic effect for grain iron and zinc concentrations in wheat[J]. Ann. Appl. Biol., 2016, 169(1):27-35. |
62 | SOMERS D J, FEDAK G, SAVARD M. Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat[J]. Genome, 2003, 46(4): 555-564. |
63 | GERVAIS L, DEDRYVER F, YMORLAIS J, et al.. Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat[J]. Theor. Appl. Genet., 2003, 106(6): 961-970. |
64 | PAILLARD S, SCHNURBUSCH T, TIWARI R, et al.. QTL analysis of resistance to Fusarium head blight in Swiss winter wheat (Triticum aestivum L.)[J]. Theor. Appl. Genet., 2004, 109(2): 323-332. |
65 | SCHMOLKE M, ZIMMERMANN G, BUERSTMAYR H, et al.. Molecular mapping of Fusarium head blight resistance in the winter wheat population Dream/Lynx [J]. Theor. Appl. Genet., 2005, 111(4): 747-756. |
66 | SRINIVASACHARY, GOSMAN N, STEED A, et al.. Susceptibility to Fusarium head blight is associated with the Rht-D1b semi-dwarfing allele in wheat[J]. Theor. Appl. Genet., 2008, 116(8): 1145-1153. |
67 | HILTON, JENKINSON, HOLLINS, et al.. Relationship between cultivar height and severity of Fusarium ear blight in wheat[J]. Plant Pathol., 1999, 48 (2): 202-208. |
68 | LIU Y X, YANG X M, MA J, et al.. Plant height affects Fusarium crown rot severity in wheat[J]. Phytopathology, 2010, 100(12): 1276-1281. |
69 | KOCHEVA K, NENOVA V, KARCEVA T, et al.. Changes in water status, membrane stability and antioxidant capacity of wheat seedlings carrying different Rht‐B1 dwarfing alleles under drought stress[J]. J. Agron. Crop Sci., 2014, 200 (2): 83-91. |
70 | NENOVA V R, KOCHEVA K V, PETROV P I, et al.. Wheat Rht‐B1 dwarfs exhibit better photosynthetic response to water deficit at seedling stage compared to the wild type[J]. J. Agron. Crop Sci., 2015, 200 (6): 434-443. |
71 | BOEVEN P H G, LONGIN C F H, LEISER W L, et al.. Genetic architecture of male floral traits required for hybrid wheat breeding[J]. Theor. Appl. Genet., 2016, 129(12): 2343-2357. |
72 | LANGER S M, LONGIN C F H, RSCHUM TW, et al.. Phenotypic evaluation of floral and flowering traits with relevance for hybrid breeding in wheat (Triticum aestivum L.)[J]. Plant Breeding, 2014, 133 (4): 433-441. |
73 | SCHIERENBECK M, ALQUDAH A M, LANTOS E, et al.. Green Revolution dwarfing Rht genes negatively affected wheat floral traits related to cross-pollination efficiency[J]. Plant J., 2024, 118(4): 1071-1085. |
74 | GARST N, BELAMKAR V, EASTERLY A, et al.. Evaluation of pollination traits important for hybrid wheat development in Great Plains germplasm[J]. Crop Sci., 2023, 63(3): 1169-1182. |
75 | SZALAI G, TAJTI J, HAMOW K Á, et al.. Molecular background of cadmium tolerance in Rht dwarf wheat mutant is related to a metabolic shift from proline and polyamine to phytochelatin synthesis[J]. Environ. Sci. Pollut. Res., 2020, 27(19): 23664-23676. |
76 | SZALAI G, DERNOVICS M, GONDOR O K, et al.. Mutations in Rht-B1 locus may negatively affect frost tolerance in bread wheat[J/OL]. Int. J. Mol. Sci., 2022, 23(14): 7969[2024-07-25]. . |
77 | ELLIS H, SPIELMEYER W, GALE R, et al.. “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat[J]. Theor. Appl. Genet., 2002, 105(6-7): 1038-1042. |
78 | CHEBOTAR S V, KORZUN V N, SIVOLAP Y M. Allele distribution at locus WMS261 marking the dwarfing gene Rht8in common wheat cultivars of southern Ukraine[J]. Russ. J. Genet., 2001, 37(8): 894-898. |
79 | GAO Z, WANG Y, TIAN G, et al.. Plant height and its relationship with yield in wheat under different irrigation regime[J]. Irrig. Sci., 2020, 38(4): 365-371. |
80 | 昝凯,李春游,敬樊,等.部分印度小麦品种矮秆基因的检测及其对部分性状的影响[J].麦类作物学报,2015,35(7):910-917. |
ZAN K, LI C Y, JING F, et al.. Detection of dwarfing genes in some India wheat cultivars and their influences on partial agronomic characteristics[J]. J. Triticeae Crops, 2015, 35(7): 910-917. | |
81 | 王艳丽,隋建枢,陈天青,等.小麦优异矮源石矮2号衍生F2代矮秆基因检测及农艺性状分析[J].种子,2022,41(12):122-125+131. |
WANG Y L, SUI J S, CHEN T Q, et al.. Agronomic characteristic analysis and detection of dwarf gene in F2 generation derived from wheat dwarf source shiai 2[J]. Seed, 2022, 41(12): 122-125+131. | |
82 | BAI G H, DAS M K, et al.. Covariation for microsatellite marker alleles associated with Rht8 and coleoptile length in winter wheat[J]. Crop Sci., 2004, 44(4): 1187-1194. |
83 | REBETZKE G J, RICHARDS R A, FISCHER V M, et al.. Breeding long coleoptile, reduced height wheats[J]. Euphytica, 1999, 106(2): 159-168. |
84 | JATAYEV S, SUKHIKH I, VAVILOVA V, et al.. Green revolution 'stumbles' in a dry environment: dwarf wheat with rht genes fails to produce higher grain yield than taller plants under drought[J]. Plant Cell Environ., 2020, 43(10): 2355-2364. |
85 | WANG C, ZHANG L, XIE Y, et al.. Agronomic trait analysis and genetic mapping of a new wheat semidwarf gene Rht-SN 33d[J/OL]. Int. J. Mol. Sci., 2022, 24(1): 583[2024-07-25]. . |
86 | TIAN X, ZHU Z, XIE L, et al. Preliminary exploration of the source, spread, and distribution of Rht24 reducing height in bread wheat[J]. Crop Sci., 2019, 59 (1): 19-24. |
[1] | 方梦旗, 赵颖, 王子晨, 贾文昊, 王辉, 栾云霞. 交链孢酚适配体荧光试纸条检测方法的建立及应用[J]. 生物技术进展, 2024, 14(6): 1024-1031. |
[2] | 杨青, 牛刚, 康建刚, 王晨芳, 段凯莉. 禾谷镰孢的致病机制及其与小麦的分子互作[J]. 生物技术进展, 2024, 14(5): 738-744. |
[3] | 王立雯, 王江坤, 王冰冰, 徐剑宏, 史建荣, 刘馨. 镰刀菌毒素在植物与病原菌互作过程中的作用[J]. 生物技术进展, 2024, 14(2): 182-188. |
[4] | 高维崧, 窦金萍, 韦双, 刘兴健, 张志芳, 李轶女. CRISPR/Cas系统的分类及研究现状[J]. 生物技术进展, 2022, 12(4): 532-538. |
[5] | 曹巧, 史占良, 张国丛, 班进福, 郑树松, 傅晓艺, 张士昌, 何明琦, 韩然, 高振贤. CRISPR/Cas9技术在小麦育种中的应用进展[J]. 生物技术进展, 2021, 11(6): 661-667. |
[6] | 咸莉梅, 胡怡, 李磊, 孙政玺, 何心尧, 李韬. 浅议小麦赤霉病抗性类型与鉴定方法的对应性[J]. 生物技术进展, 2021, 11(5): 554-559. |
[7] | 肖进, 程怡璠, 宋融融, 孙丽, 王宗宽, 袁春霞, 王海燕, 王秀娥. 小麦抗赤霉病外源种质的创制和育种利用[J]. 生物技术进展, 2021, 11(5): 560-566. |
[8] | 王仪威, 冯祎高, 刘润然, 卢春甜, 曹爱忠, 张瑞奇. 小麦-鹅观草第一部分同源群染色体渗入系鉴定与基因组归属分析[J]. 生物技术进展, 2021, 11(5): 567-573. |
[9] | 王永刚, 张旭, 张鹏, 马鸿翔. 植物细胞工程在小麦抗赤霉病育种中的应用[J]. 生物技术进展, 2021, 11(5): 574-580. |
[10] | 翟文玲, 刘彩云, 刘颖, 付必胜, 蔡瑾, 郭炜, 张巧凤, 吴纪中. 小麦赤霉病新抗源的发掘与抗性位点的检测分析[J]. 生物技术进展, 2021, 11(5): 581-589. |
[11] | 张勇, 胡文静, 张春梅, 蒋正宁, 吕国峰, 高德荣. 我国“十三五”育成小麦新品种(系)抗赤霉病进展分析与展望[J]. 生物技术进展, 2021, 11(5): 590-598. |
[12] | 苏培森. 小麦赤霉病抗病机制研究进展[J]. 生物技术进展, 2021, 11(5): 599-609. |
[13] | 李东翱, 刘慧泉, 王秦虎. 小麦响应禾谷镰刀菌侵染的转录组学研究进展[J]. 生物技术进展, 2021, 11(5): 610-617. |
[14] | 段凯莉, 江聪, 王光辉. 禾谷镰刀菌蛋白激酶研究进展[J]. 生物技术进展, 2021, 11(5): 618-627. |
[15] | 刘家俊, 陈琛, 温明星, 郭瑞, 姚维成, 李东升. 基于共表达网络和蛋白互作分析挖掘小麦赤霉病抗性相关核心蛋白[J]. 生物技术进展, 2021, 11(5): 628-633. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部