生物技术进展 ›› 2024, Vol. 14 ›› Issue (5): 738-744.DOI: 10.19586/j.2095-2341.2024.0070
• 进展评述 • 上一篇
杨青1(), 牛刚1(
), 康建刚2, 王晨芳1(
), 段凯莉1(
)
收稿日期:
2024-04-03
接受日期:
2024-05-20
出版日期:
2024-09-25
发布日期:
2024-10-22
通讯作者:
王晨芳,段凯莉
作者简介:
杨青 E-mail: qingy@nwafu.edu.cn;基金资助:
Qing YANG1(), Gang NIU1(
), Jiangang KANG2, Chenfang WANG1(
), Kaili DUAN1(
)
Received:
2024-04-03
Accepted:
2024-05-20
Online:
2024-09-25
Published:
2024-10-22
Contact:
Chenfang WANG,Kaili DUAN
摘要:
由禾谷镰孢(Fusarium graminearum)引起的小麦赤霉病作为小麦上重要的真菌病害之一,其能够产生脱氧雪腐镰刀菌烯醇(deoxynivalenol,DON)等真菌毒素,不仅影响小麦的品质,造成小麦严重减产,还严重威胁人畜健康。研究表明,在禾谷镰孢侵染小麦早期,效应蛋白以及DON毒素发挥着重要作用。综述总结了禾谷镰孢的致病机制、与小麦互作过程中效应蛋白和DON毒素的分子作用机制等方面的研究进展,并对未来致病基因的有效利用进行了展望,以期为今后禾谷镰孢-小麦的互作机制研究以及小麦赤霉病的防治提供理论参考。
中图分类号:
杨青, 牛刚, 康建刚, 王晨芳, 段凯莉. 禾谷镰孢的致病机制及其与小麦的分子互作[J]. 生物技术进展, 2024, 14(5): 738-744.
Qing YANG, Gang NIU, Jiangang KANG, Chenfang WANG, Kaili DUAN. Pathogenic Mechanism of Fusarium graminearum and its Molecular Interaction with Wheat[J]. Current Biotechnology, 2024, 14(5): 738-744.
1 | 马忠华,陈云,尹燕妮.小麦赤霉病流行成灾原因分析及防控对策探讨[J].中国科学基金,2020,34(4):464-469. |
MA Z H, CHEN Y, YIN Y N. Epidemiological analysis and management strategies of Fusarium head blight of wheat[J]. Bull. Natl. Nat. Sci. Found. China, 2020, 34(4): 464-469. | |
2 | 刘万才,刘振东,黄冲,等.近10年农作物主要病虫害发生危害情况的统计和分析[J].植物保护,2016,42(5):1-9+46. |
LIU W C, LIU Z D, HUANG C, et al.. Statistics and analysis of crop yield losses caused by main diseases and insect pests in recent 10 years[J]. Plant Prot., 2016, 42(5): 1-9+46. | |
3 | REDDY K, SALLEH B, SAAD B, et al.. An overview of mycotoxin contamination in foods and its implications for human health[J]. Toxin Rev., 2010, 29(1): 3-26. |
4 | MA H X, ZHANG X, YAO J B, et al.. Breeding for the resistance to Fusarium head blight of wheat in China[J]. Front. Agr. Sci. Eng., 2019, 6(3): 251-264. |
5 | YU H Y, SEO J A, KIM J E, et al.. Functional analyses of heterotrimeric G protein G alpha and G beta subunits in Gibberella zeae [J]. Microbiol. Read. Engl., 2008, 154(Pt 2): 392-401. |
6 | 陈云,王建强,杨荣明,等.小麦赤霉病发生危害形势及防控对策[J].植物保护,2017,43(5):11-17. |
CHEN Y, WANG J Q, YANG R M, et al.. Current situation and management strategies of Fusarium head blight in China[J]. Plant Prot., 2017, 43(5): 11-17. | |
7 | 程顺和,张勇,别同德,等.中国小麦赤霉病的危害及抗性遗传改良[J].江苏农业学报,2012,28(5):938-942. |
CHENG S H, ZHANG Y, BIE T D, et al.. Damage of wheat Fusarium head blight (FHB) epidemics and genetic improvement of wheat for scab resistance in China[J]. Jiangsu J. Agric. Sci., 2012, 28(5): 938-942. | |
8 | TRAIL F. For blighted waves of grain: Fusarium graminearum in the postgenomics era[J]. Plant Physiol., 2009, 149(1): 103-110. |
9 | BOENISCH M J, SCHÄFER W. Fusarium graminearum forms mycotoxin producing infection structures on wheat[J/OL]. BMC Plant Biol., 2011, 11: 110[2024-04-28]. . |
10 | XU M, WANG Q, WANG G, et al.. Combatting Fusarium head blight: advances in molecular interactions between Fusarium graminearum and wheat[J/OL]. Phytopathol. Res., 2022, 4(1): 37[2024-04-28]. . |
11 | DWEBA C C, FIGLAN S, SHIMELIS H A, et al.. Fusarium head blight of wheat: pathogenesis and control strategies[J]. Crop Prot., 2017, 91: 114-122. |
12 | BROWN N A, SCHREVENS S, VAN DIJCK P, et al.. Fungal G-protein-coupled receptors: mediators of pathogenesis and targets for disease control[J]. Nat. Microbiol., 2018, 3(4): 402-414. |
13 | JIANG C, CAO S, WANG Z, et al.. An expanded subfamily of G-protein-coupled receptor genes in Fusarium graminearum required for wheat infection[J]. Nat. Microbiol., 2019, 4(9): 1582-1591. |
14 | URBAN M, MOTT E, FARLEY T, et al.. The Fusarium graminearum MAP1 gene is essential for pathogenicity and development of perithecia[J]. Mol. Plant Pathol., 2003, 4(5): 347-359. |
15 | HOU Z, XUE C, PENG Y, et al.. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection[J]. Mol. Plant Microbe Interact., 2002, 15(11): 1119-1127. |
16 | ZHENG D, ZHANG S, ZHOU X, et al.. The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum [J/OL]. PLoS One, 2012, 7(11): e49495[2024-04-28]. . |
17 | HU S, ZHOU X, GU X, et al.. The cAMP-PKA pathway regulates growth, sexual and asexual differentiation, and pathogenesis in Fusarium graminearum [J]. Mol. Plant Microbe Interact., 2014, 27(6): 557-566. |
18 | GIRALDO M C, VALENT B. Filamentous plant pathogen effectors in action[J]. Nat. Rev. Microbiol., 2013, 11(11): 800-814. |
19 | BROWN N A, EVANS J, MEAD A, et al.. A spatial temporal analysis of the Fusarium graminearum transcriptome during symptomless and symptomatic wheat infection[J]. Mol. Plant Pathol., 2017, 18(9): 1295-1312. |
20 | CARERE J, BENFIELD A H, OLLIVIER M, et al.. A tomatinase-like enzyme acts as a virulence factor in the wheat pathogen Fusarium graminearum [J]. Fungal Genet. Biol., 2017, 100: 33-41. |
21 | GUO Y, YAO S, YUAN T, et al.. The spatiotemporal control of KatG2 catalase-peroxidase contributes to the invasiveness of Fusarium graminearum in host plants[J]. Mol. Plant Pathol., 2019, 20(5): 685-700. |
22 | HAO G, MCCORMICK S, VAUGHAN M M, et al.. Fusarium graminearum Arabinanase (Arb93B) enhances wheat head blight susceptibility by suppressing plant immunity[J]. Mol. Plant Microbe Interact., 2019, 32(7): 888-898. |
23 | YANG B, WANG Y, TIAN M, et al.. Fg12 ribonuclease secretion contributes to Fusarium graminearum virulence and induces plant cell death[J]. J. Integr. Plant Biol., 2021, 63(2): 365-377. |
24 | ELLINGER D, SODE B, FALTER C, et al.. Resistance of callose synthase activity to free fatty acid inhibition as an indicator of Fusarium head blight resistance in wheat[J/OL]. Plant Signal. Behav., 2014, 9(7): e28982[2024-04-28]. . |
25 | JIANG C, HEI R, YANG Y, et al.. An orphan protein of Fusarium graminearum modulates host immunity by mediating proteasomal degradation of TaSnRK1α[J/OL]. Nat. Commun., 2020, 11(1): 4382[2024-04-28]. . |
26 | ZUO N, BAI W Z, WEI W Q, et al.. Fungal CFEM effectors negatively regulate a maize wall-associated kinase by interacting with its alternatively spliced variant to dampen resistance[J/OL]. Cell Rep., 2022, 41(13): 111877[2024-04-28]. . |
27 | ALEXANDER N J, PROCTOR R H, MCCORMICK S P. Genes, gene clusters, and biosynthesis of trichothecenes and fumonisins in Fusarium [J]. Toxin Rev., 2009, 28(2-3): 198-215. |
28 | CHEN Y, KISTLER H C, MA Z. Fusarium graminearum trichothecene mycotoxins: biosynthesis, regulation, and management[J]. Annu. Rev. Phytopathol., 2019, 57: 15-39. |
29 | YU F, GU Q, YUN Y, et al.. The TOR signaling pathway regulates vegetative development and virulence in Fusarium graminearum [J]. N. Phytol., 2014, 203(1): 219-232. |
30 | LEE Y, MIN K, SON H, et al.. ELP3 is involved in sexual and asexual development, virulence, and the oxidative stress response in Fusarium graminearum [J]. Mol. Plant Microbe Interact., 2014, 27(12): 1344-1355. |
31 | CHEN Y, WANG J, YANG N, et al.. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation[J/OL]. Nat. Commun., 2018, 9(1): 3429[2024-04-28]. . |
32 | KONG X, VAN DIEPENINGEN A D, VAN DER LEE T A J, et al.. The Fusarium graminearum histone acetyltransferases are important for morphogenesis, DON biosynthesis, and pathogenicity[J/OL]. Front. Microbiol., 2018, 9: 654[2024-04-28]. . |
33 | REYES-DOMINGUEZ Y, BOEDI S, SULYOK M, et al.. Heterochromatin influences the secondary metabolite profile in the plant pathogen Fusarium graminearum [J]. Fungal Genet. Biol., 2012, 49(1): 39-47. |
34 | CONNOLLY L R, SMITH K M, FREITAG M. The Fusarium graminearum histone H3K27 methyltransferase KMT6 regulates development and expression of secondary metabolite gene clusters[J/OL]. PLoS Genet., 2013, 9(10): e1003916[2024-04-28]. . |
35 | JIANG H, XIA A, YE M, et al.. Opposing functions of Fng1 and the Rpd3 HDAC complex in H4 acetylation in Fusarium graminearum [J/OL]. PLoS Genet., 2020, 16(11): e1009185[2024-04-28]. . |
36 | XU H, YE M, XIA A, et al.. The Fng3 ING protein regulates H3 acetylation and H4 deacetylation by interacting with two distinct histone-modifying complexes[J]. N. Phytol., 2023, 239(2): 807-809. |
37 | JIAO F, KAWAKAMI A, NAKAJIMA T. Effects of different carbon sources on trichothecene production and Tri gene expression by Fusarium graminearum in liquid culture[J]. FEMS Microbiol. Lett., 2008, 285(2): 212-219. |
38 | HOU R, JIANG C, ZHENG Q, et al.. The AreA transcription factor mediates the regulation of deoxynivalenol (DON) synthesis by ammonium and cyclic adenosine monophosphate (cAMP) signalling in Fusarium graminearum [J]. Mol. Plant Pathol., 2015, 16(9): 987-999. |
39 | MOONJELY S, EBERT M, PATON-GLASSBROOK D, et al.. Update on the state of research to manage Fusarium head blight[J/OL]. Fungal Genet. Biol., 2023, 169: 103829[2024-04-28]. . |
40 | GARDINER D M, KAZAN K, MANNERS J M. Nutrient profiling reveals potent inducers of trichothecene biosynthesis in Fusarium graminearum [J]. Fungal Genet. Biol., 2009, 46(8): 604-613. |
41 | AUDENAERT K, CALLEWAERT E, HÖFTE M, et al.. Hydrogen peroxide induced by the fungicide prothioconazole triggers deoxynivalenol (DON) production by Fusarium graminearum [J/OL]. BMC Microbiol., 2010, 10: 112[2024-04-28]. . |
42 | MA H, LIU Y, ZHAO X, et al.. Exploring and applying genes to enhance the resistance to Fusarium head blight in wheat[J/OL]. Front. Plant Sci., 2022, 13: 1026611[2024-04-28]. . |
43 | MA L, SHANG Y, CAO A, et al.. Molecular cloning and characterization of an up-regulated UDP-glucosyltransferase gene induced by DON from Triticum aestivum L. cv. Wangshuibai[J]. Mol. Biol. Rep., 2010, 37(2): 785-795. |
44 | ZHAO L, MA X, SU P, et al.. Cloning and characterization of a specific UDP-glycosyltransferase gene induced by DON and Fusarium graminearum [J]. Plant Cell Rep., 2018, 37(4): 641-652. |
45 | HE Y, WU L, LIU X, et al.. TaUGT6, a novel UDP-glycosyltransferase gene enhances the resistance to FHB and DON accumulation in wheat[J/OL]. Front. Plant Sci., 2020, 11: 574775[2024-04-28]. . |
46 | WALTER S, KAHLA A, ARUNACHALAM C, et al.. A wheat ABC transporter contributes to both grain formation and mycotoxin tolerance[J]. J. Exp. Bot., 2015, 66(9): 2583-2593. |
47 | ITO M, SATO I, ISHIZAKA M, et al.. Bacterial cytochrome P450 system catabolizing the Fusarium toxin deoxynivalenol[J]. Appl. Environ. Microbiol., 2013, 79(5): 1619-1628. |
48 | GUNUPURU L R, ARUNACHALAM C, MALLA K B, et al.. A wheat cytochrome P450 enhances both resistance to deoxynivalenol and grain yield[J/OL]. PLoS One, 2018, 13(10): e0204992[2024-04-28]. . |
49 | WANG H, SUN S, GE W, et al.. Horizontal gene transfer of Fhb7 from fungus underlies Fusarium head blight resistance in wheat[J/OL]. Science, 2020, 368(6493): eaba5435[2024-04-28]. . |
50 | RAWAT N, PUMPHREY M O, LIU S, et al.. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight[J]. Nat. Genet., 2016, 48(12): 1576-1580. |
51 | SU Z, BERNARDO A, TIAN B, et al.. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat[J]. Nat. Genet., 2019, 51(7): 1099-1105. |
52 | LI G, ZHOU J, JIA H, et al.. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight[J]. Nat. Genet., 2019, 51(7): 1106-1112. |
53 | PEROCHON A, JIA J, KAHLA A, et al.. TaFROG encodes a pooideae orphan protein that interacts with SnRK1 and enhances resistance to the mycotoxigenic fungus Fusarium graminearum [J]. Plant Physiol., 2015, 169(4): 2895-2906. |
54 | KAGE U, YOGENDRA K N, KUSHALAPPA A C. TaWRKY70 transcription factor in wheat QTL-2DL regulates downstream metabolite biosynthetic genes to resist Fusarium graminearum infection spread within spike[J/OL]. Sci. Rep., 2017, 7: 42596[2024-04-28]. . |
55 | KAGE U, KARRE S, KUSHALAPPA A C, et al.. Identification and characterization of a fusarium head blight resistance gene TaACT in wheat QTL-2DL[J]. Plant Biotechnol. J., 2017, 15(4): 447-457. |
56 | GUO F, WU T, XU G, et al.. TaWAK2A-800, a wall-associated kinase, participates positively in resistance to Fusarium head blight and sharp eyespot in wheat[J/OL]. Int. J. Mol. Sci., 2021, 22(21): 11493[2024-04-28]. . |
57 | CHENG W, SONG X S, LI H P, et al.. Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to Fusarium head blight and seedling blight in wheat[J]. Plant Biotechnol. J., 2015, 13(9): 1335-1345. |
58 | KOCH A, BIEDENKOPF D, FURCH A, et al.. An RNAi-based control of Fusarium graminearum infections through spraying of long dsRNAs involves a plant passage and is controlled by the fungal silencing machinery[J/OL]. PLoS Pathog., 2016, 12(10): e1005901[2024-04-28]. . |
59 | WANG M, WU L, MEI Y, et al.. Host-induced gene silencing of multiple genes of Fusarium graminearum enhances resistance to Fusarium head blight in wheat[J]. Plant Biotechnol. J., 2020, 18(12): 2373-2375. |
[1] | 王立雯, 王江坤, 王冰冰, 徐剑宏, 史建荣, 刘馨. 镰刀菌毒素在植物与病原菌互作过程中的作用[J]. 生物技术进展, 2024, 14(2): 182-188. |
[2] | 王仪威, 冯祎高, 刘润然, 卢春甜, 曹爱忠, 张瑞奇. 小麦-鹅观草第一部分同源群染色体渗入系鉴定与基因组归属分析[J]. 生物技术进展, 2021, 11(5): 567-573. |
[3] | 李东翱, 刘慧泉, 王秦虎. 小麦响应禾谷镰刀菌侵染的转录组学研究进展[J]. 生物技术进展, 2021, 11(5): 610-617. |
[4] | 段凯莉, 江聪, 王光辉. 禾谷镰刀菌蛋白激酶研究进展[J]. 生物技术进展, 2021, 11(5): 618-627. |
[5] | 阮双, 司红起. 小麦DON毒素研究进展[J]. 生物技术进展, 2021, 11(5): 634-641. |
[6] | 李兵, 梁晋刚, 朱育攀, 王御琦, 焦浈. 我国小麦赤霉病成灾原因分析及防控策略探讨[J]. 生物技术进展, 2021, 11(5): 647-652. |
[7] | 孙政玺, 胡思嘉, 周益雷, 胡怡, 江宁, 李磊, 李韬. sRNA的研究概述及其在小麦赤霉病防治中的应用展望[J]. 生物技术进展, 2021, 11(5): 653-659. |
[8] | 严海璘,,朱宗财,,张王斌,,杜培秀,张超,赵文军4,李为民. 梨火疫病菌两个Sec依赖的外泌纤维素酶鉴定及在侵染梨幼果过程中的基因表达分析[J]. 生物技术进展, 2020, 10(5): 517-523. |
[9] | 吴迪,,郑彤,李磊,李韬. 小麦全基因组抗赤霉病QTL关联位点特异性SSR标记的筛选、等位变异及效应解析[J]. 生物技术进展, 2020, 10(3): 242-250. |
[10] | 乔栋娟,蔡继业. 条形码微流控芯片在分泌蛋白检测方面的应用[J]. 生物技术进展, 2012, 2(5): 323-327. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部