生物技术进展 ›› 2024, Vol. 14 ›› Issue (5): 825-831.DOI: 10.19586/j.2095-2341.2024.0014
• 进展评述 • 上一篇
赵艺玮1(), 高甜璐1, 张佳辉1, 王钰淇1, 常盼2, 王红2(
)
收稿日期:
2024-01-26
接受日期:
2024-03-27
出版日期:
2024-09-25
发布日期:
2024-10-22
通讯作者:
王红
作者简介:
赵艺玮 E-mail:925917352@qq.com;
基金资助:
Yiwei ZHAO1(), Tianlu GAO1, Jiahui ZHANG1, Yuqi WANG1, Pan CHANG2, Hong WANG2(
)
Received:
2024-01-26
Accepted:
2024-03-27
Online:
2024-09-25
Published:
2024-10-22
Contact:
Hong WANG
摘要:
肾间质纤维化是糖尿病肾病(diabetic kidney disease,DKD)的重要病理特征,也是促使其发展为终末期肾病的重要因素,严重威胁糖尿病肾病患者的生命安全。目前,糖尿病肾病的研究已取得较大进展,但线粒体质量控制在其发生、发展过程中的具体机制尚不清楚。真核细胞功能的维持离不开线粒体,而线粒体稳态的维持依赖于线粒体质量控制,包括线粒体生物发生、线粒体动力学、线粒体蛋白稳态以及线粒体自噬等机制。这些机制的缺失可能导致线粒体结构损伤和功能障碍,进而造成细胞死亡与组织损伤。越来越多的证据表明,线粒体质量控制失衡在肾间质纤维化的发生与进展中起到了关键作用。综述了在糖尿病肾病肾间质纤维化中线粒体质量控制的研究进展,以期为糖尿病肾病的治疗提供新的思路,从而提高糖尿病肾病患者的存活率和生活质量。
中图分类号:
赵艺玮, 高甜璐, 张佳辉, 王钰淇, 常盼, 王红. 线粒体质量控制失衡导致糖尿病肾病肾间质纤维化的研究进展[J]. 生物技术进展, 2024, 14(5): 825-831.
Yiwei ZHAO, Tianlu GAO, Jiahui ZHANG, Yuqi WANG, Pan CHANG, Hong WANG. Research Progress on the Imbalance of Mitochondrial Quality Control Leading to Renal Interstitial Fibrosis in Diabetic Kidney Disease[J]. Current Biotechnology, 2024, 14(5): 825-831.
1 | SUN H, SAEEDI P, KARURANGA S, et al.. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL]. Diabetes Res. Clin. Pract., 2022, 183: 109119[2024-03-26]. . |
2 | PELLE M C, PROVENZANO M, BUSUTTI M, et al.. Up-date on diabetic nephropathy [J/OL]. Life (Basel)., 2022,12(8):1202[2024-01-25]. . |
3 | ZHANG Y, JIN D, KANG X, et al.. Signaling pathways involved in diabetic renal fibrosis[J/OL]. Front. Cell Dev. Biol., 2021, 9: 696542[2024-03-26]. . |
4 | MARTÍNEZ-KLIMOVA E, APARICIO-TREJO O E, GÓMEZ-SIERRA T, et al.. Mitochondrial dysfunction and endoplasmic reticulum stress in the promotion of fibrosis in obstructive nephropathy induced by unilateral ureteral obstruction[J]. Biofactors, 2020, 46(5): 716-733. |
5 | AHMAD A A, DRAVES S O, ROSCA M. Mitochondria in diabetic kidney disease[J/OL]. Cells, 2021, 10(11): 2945[2024-03-26]. . |
6 | BAEK J, LEE Y H, JEONG H Y, et al.. Mitochondrial quality control and its emerging role in the pathogenesis of diabetic kidney disease[J]. Kidney Res. Clin. Pract., 2023, 42(5): 546-560. |
7 | ZHAO M, LI Y, LU C, et al.. PGC1α degradation suppresses mitochondrial biogenesis to confer radiation resistance in glioma[J]. Cancer Res., 2023, 83(7): 1094-1110. |
8 | TANRIOVER C, COPUR S, UCKU D, et al.. The mitochondrion: a promising target for kidney disease[J/OL]. Pharmaceutics, 2023, 15(2): 570[2024-03-26]. . |
9 | SHE Y, YU M, WANG L, et al.. Emerging protective actions of PGC-1α in diabetic nephropathy[J/OL]. Oxid. Med. Cell. Longev., 2022, 2022: 6580195[2024-03-26]. . |
10 | YUAN L, YUAN Y, LIU F, et al.. PGC-1α alleviates mitochondrial dysfunction via TFEB-mediated autophagy in cisplatin-induced acute kidney injury[J]. Aging (Albany NY), 2021, 13(6): 8421-8439. |
11 | FONTECHA-BARRIUSO M, LOPEZ-DIAZ A M, GUERRERO-MAUVECIN J, et al.. Tubular mitochondrial dysfunction, oxidative stress, and progression of chronic kidney disease[J/OL]. Antioxidants (Basel), 2022, 11(7): 1356[2024-03-26]. . |
12 | QIN X, JIANG M, ZHAO Y, et al.. Berberine protects against diabetic kidney disease via promoting PGC-1α-regulated mitochondrial energy homeostasis[J]. Br. J. Pharmacol., 2020, 177(16): 3646-3661. |
13 | BIAN C, REN H. Sirtuin family and diabetic kidney disease[J/OL]. Front. Endocrinol. (Lausanne), 2022, 13: 901066[2024-03-26]. . |
14 | ALA M. Sestrin2 signaling pathway regulates podocyte biology and protects against diabetic nephropathy[J/OL]. J. Diabetes Res., 2023, 2023: 8776878[2024-03-26]. . |
15 | NAM B Y, JHEE J H, PARK J, et al.. PGC-1α inhibits the NLRP3 inflammasome via preserving mitochondrial viability to protect kidney fibrosis[J/OL]. Cell Death Dis., 2022, 13(1): 31[2024-03-26]. . |
16 | ZHOU Y, LIU L, JIN B, et al.. Metrnl alleviates lipid accumulation by modulating mitochondrial homeostasis in diabetic nephropathy[J]. Diabetes, 2023, 72(5): 611-626. |
17 | CHAN D C. Mitochondrial dynamics and its involvement in disease[J]. Annu. Rev. Pathol., 2020, 15: 235-259. |
18 | NYENHUIS S B, WU X, STRUB M P, et al.. OPA1 helical structures give perspective to mitochondrial dysfunction[J]. Nature, 2023, 620(7976): 1109-1116. |
19 | QIN L, XI S. The role of mitochondrial fission proteins in mitochondrial dynamics in kidney disease[J/OL]. Int. J. Mol. Sci., 2022, 23(23): 14725[2024-03-26]. . |
20 | CHENG Y H, YAO C A, YANG C C, et al.. Sodium thiosulfate through preserving mitochondrial dynamics ameliorates oxidative stress induced renal apoptosis and ferroptosis in 5/6 nephrectomized rats with chronic kidney diseases[J/OL]. PLoS One, 2023, 18(2): e0277652[2024-03-26]. . |
21 | POOLSRI W, NOITEM R, JUTABHA P, et al.. Discovery of a Chalcone derivative as an anti-fibrotic agent targeting transforming growth factor-β1 signaling: potential therapy of renal fibrosis[J/OL]. Biomed. Pharmacother., 2023, 165: 115098[2024-03-26]. . |
22 | WANG Y, LU M, XIONG L, et al.. Drp1-mediated mitochondrial fission promotes renal fibroblast activation and fibrogenesis[J/OL]. Cell Death Dis., 2020, 11(1): 29[2024-03-26]. . |
23 | GALVAN D L, MISE K, DANESH F R. Mitochondrial regulation of diabetic kidney disease[J/OL]. Front. Med. (Lausanne), 2021, 8: 745279[2024-03-26]. . |
24 | 关毅鸣,王丽妍,刘文虎.线粒体功能及其与急性肾损伤和糖尿病肾病的关系[J].医学研究杂志,2020,49(7):5-8. |
GUAN Y M, WANG L Y, LIU W H. Mitochondrial function and its relationship with acute renal injury and diabetes nephropathy[J]. J. Med. Res., 2020,49(7):5-8. | |
25 | NARONGKIATIKHUN P, CHATTIPAKORN S C, CHATTIPAKORN N. Mitochondrial dynamics and diabetic kidney disease: missing pieces for the puzzle of therapeutic approaches[J]. J. Cell. Mol. Med., 2022, 26(2): 249-273. |
26 | ZHONG Y, JIN R, LUO R, et al.. Diosgenin targets CaMKK2 to alleviate type II diabetic nephropathy through improving autophagy, mitophagy and mitochondrial dynamics[J/OL]. Nutrients, 2023, 15(16): 3554[2024-03-26]. . |
27 | FLEMMING N, PERNOUD L, FORBES J, et al.. Mitochondrial dysfunction in individuals with diabetic kidney disease: a systematic review[J/OL]. Cells, 2022, 11(16): 2481[2024-03-26]. . |
28 | JIANG N, ZHAO H, HAN Y, et al.. HIF-1α ameliorates tubular injury in diabetic nephropathy via HO-1-mediated control of mitochondrial dynamics[J/OL]. Cell Prolif., 2020, 53(11): e12909[2024-03-26]. . |
29 | WACHOSKI-DARK E, ZHAO T, KHAN A, et al.. Mitochondrial protein homeostasis and cardiomyopathy[J/OL]. Int. J. Mol. Sci., 2022, 23(6): 3353[2024-03-26]. . |
30 | ARRIETA A, BLACKWOOD E A, STAUFFER W T, et al.. Integrating ER and mitochondrial proteostasis in the healthy and diseased heart[J/OL]. Front. Cardiovasc. Med., 2020, 6: 193[2024-03-26]. . |
31 | DESHWAL S, FIEDLER K U, LANGER T. Mitochondrial proteases: multifaceted regulators of mitochondrial plasticity[J]. Annu. Rev. Biochem., 2020, 89: 501-528. |
32 | TODOSENKO N, KHAZIAKHMATOVA O, MALASHCHENKO V, et al.. Mitochondrial dysfunction associated with mtDNA in metabolic syndrome and obesity[J/OL]. Int. J. Mol. Sci., 2023, 24(15): 12012[2024-03-26]. . |
33 | SUN C L, VAN GILST M, CROWDER C M. Hypoxia-induced mitochondrial stress granules[J/OL]. Cell Death Dis., 2023, 14(7): 448[2024-03-26]. . |
34 | CATRINA S B, ZHENG X. Hypoxia and hypoxia-inducible factors in diabetes and its complications[J]. Diabetologia, 2021, 64(4): 709-716. |
35 | BAI M, WU M, JIANG M, et al.. LONP1 targets HMGCS2 to protect mitochondrial function and attenuate chronic kidney disease[J/OL]. EMBO Mol. Med., 2023, 15(2): e16581[2024-03-26]. . |
36 | ZHANG Y, WEN P, LUO J, et al.. Sirtuin 3 regulates mitochondrial protein acetylation and metabolism in tubular epithelial cells during renal fibrosis[J/OL]. Cell Death Dis., 2021, 12(9): 847[2024-03-26]. . |
37 | LI R, WANG Z, WANG Y, et al.. SIRT3 regulates mitophagy in liver fibrosis through deacetylation of PINK1/NIPSNAP1[J]. J. Cell. Physiol., 2023, 238(9): 2090-2102. |
38 | JIAN Y, YANG Y, CHENG L, et al.. Sirt3 mitigates LPS-induced mitochondrial damage in renal tubular epithelial cells by deacetylating YME1L1[J/OL]. Cell Prolif., 2023, 56(2): e13362[2024-03-26]. . |
39 | ONISHI M, YAMANO K, SATO M, et al.. Molecular mechanisms and physiological functions of mitophagy[J/OL]. EMBO J., 2021, 40(3): e104705[2024-03-26]. . |
40 | YAN C, GONG L, CHEN L, et al.. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis[J]. Autophagy, 2020, 16(3): 419-434. |
41 | SHAN Z, FA W H, TIAN C R, et al.. Mitophagy and mitochondrial dynamics in type 2 diabetes mellitus treatment[J]. Aging, 2022, 14(6): 2902-2919. |
42 | WANG D, KANG L, CHEN C A, et al.. Loss of legumain induces premature senescence and mediates aging-related renal fibrosis[J/OL]. Aging Cell, 2022, 21(3): e13574[2024-03-26]. . |
43 | JIN L, YU B, LIU G, et al.. Mitophagy induced by UMI-77 preserves mitochondrial fitness in renal tubular epithelial cells and alleviates renal fibrosis[J/OL]. FASEB J., 2022, 36(6): e22342[2024-03-26]. . |
44 | YOON Y M, GO G, YOON S, et al.. Melatonin treatment improves renal fibrosis via miR-4516/SIAH3/PINK1 axis[J/OL]. Cells, 2021, 10(7): 1682[2024-03-26]. . |
45 | LIU T, YANG Q, ZHANG X, et al.. Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis[J/OL]. Life Sci., 2020, 257: 118116[2024-03-26]. . |
46 | LIU L, BAI F, SONG H, et al.. Upregulation of TIPE1 in tubular epithelial cell aggravates diabetic nephropathy by disrupting PHB2 mediated mitophagy[J/OL]. Redox Biol., 2022, 50: 102260 [2024-03-26]. . |
47 | WANG X, SONG M, LI X, et al.. CERS6-derived ceramides aggravate kidney fibrosis by inhibiting PINK1-mediated mitophagy in diabetic kidney disease[J/OL]. Am. J. Physiol. Cell Physiol., 2023, 325(2):C538-C549[2024-03-26]. . |
48 | HAN Y C, TANG S Q, LIU Y T, et al.. AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice[J/OL]. Cell Death Dis., 2021, 12(10): 925[2024-03-26]. . |
49 | HUANG C, YI H, SHI Y, et al.. KCa3.1 mediates dysregulation of mitochondrial quality control in diabetic kidney disease[J/OL]. Front. Cell Dev. Biol., 2021, 9: 573814[2024-03-26]. . |
50 | JPARK S, KIM Y, LI C, et al.. Blocking CHOP-dependent TXNIP shuttling to mitochondria attenuates albuminuria and mitigates kidney injury in nephrotic syndrome[J/OL]. Proc. Natl. Acad. Sci. USA, 2022, 119(35): e2116505119[2024-03-26]. . |
51 | LIU Z, NAN P, GONG Y, et al.. Endoplasmic reticulum stress-triggered ferroptosis via the XBP1-Hrd1-Nrf2 pathway induces EMT progression in diabetic nephropathy[J/OL]. Biomed. Pharmacother., 2023, 164: 114897[2024-03-26]. . |
52 | INAGI R. Organelle stress and metabolic derangement in kidney disease[J/OL]. Int. J. Mol. Sci., 2022, 23(3): 1723[2024-03-26]. . |
53 | MAO H, CHEN W, CHEN L, et al.. Potential role of mitochondria-associated endoplasmic reticulum membrane proteins in diseases[J/OL]. Biochem. Pharmacol., 2022, 199: 115011[2024-03-26]. . |
54 | XUE M, FANG T, SUN H, et al.. PACS-2 attenuates diabetic kidney disease via the enhancement of mitochondria-associated endoplasmic reticulum membrane formation[J/OL]. Cell Death Dis., 2021, 12(12): 1107[2024-03-26]. . |
[1] | 邱冰滢, 陈雪瑶, 王辉, 李晨虹, 张东升. 基于基因富集的鸟类线粒体基因组快速获取方法研究[J]. 生物技术进展, 2024, 14(4): 618-630. |
[2] | 王钰淇, 王心雨, 王颖凡, 孟远翠, 严喜章, 常盼. 线粒体生物合成在糖尿病心肌病中的研究进展[J]. 生物技术进展, 2024, 14(2): 221-227. |
[3] | 苏芳林, 罗鑫, 唐赛男, 黄乐韵, 胡维, 陆世龙, 冉龙娇, 向少伟. 基于网络药理学和实验验证探究糖肾宝复方治疗糖尿病肾病的作用机制[J]. 生物技术进展, 2024, 14(1): 160-171. |
[4] | 张兰兰, 李才华, 方雨竹, 宋岩, 康婉琳, 李志宇, 张晓, 张锐. 线粒体SSR分子标记在植物中的应用进展[J]. 生物技术进展, 2023, 13(6): 821-826. |
[5] | 潘舟, 胡克. 线粒体功能障碍在缺氧性肺动脉高压中的作用[J]. 生物技术进展, 2023, 13(6): 882-888. |
[6] | 张卫平, 邱冰滢, 张东升. 不同食性雁形目鸟类线粒体基因组的适应性进化分析[J]. 生物技术进展, 2023, 13(5): 748-754. |
[7] | 马晨, 宋怡菲, 仪杨, 刘子怡, 谢飞, 马雪梅. 氢气与线粒体作用关系的研究进展[J]. 生物技术进展, 2023, 13(3): 366-374. |
[8] | 张晓, 李才华, 王婧, 张兰兰, 牟晓雨, 王昕玥, 甘刘美, 周鹏展, 张锐. 基因加倍对棉花线粒体atpA基因RNA编辑率的影响[J]. 生物技术进展, 2022, 12(5): 737-745. |
[9] | 宋怡菲, 谢飞, 马晨, 马雪梅. 高等植物氢化酶活性研究进展[J]. 生物技术进展, 2022, 12(4): 481-489. |
[10] | 侯凯耀, 张二飞, 郑李娜, 陈红光, 谢克亮. 富氢液对脓毒症小鼠心肌细胞线粒体自噬的影响[J]. 生物技术进展, 2022, 12(4): 497-502. |
[11] | 黄乔木, 何艳. 雷帕霉素对糖尿病肾病大鼠足细胞生物学行为及mTOR信号通路的影响[J]. 生物技术进展, 2022, 12(3): 460-466. |
[12] | 周娜娜, 王小艳, 张媛, 王靖, 赵国淼, 魏超, 杨凯, 安泰. 重组蛋白药物的生产技术进展[J]. 生物技术进展, 2021, 11(6): 724-731. |
[13] | 王珍,杨洛,廖敏,郝亚荣. mTOR信号通路在糖尿病肾病发病机制中的研究进展[J]. 生物技术进展, 2021, 11(3): 316-321. |
[14] | 金童,陈铖. 内质网应激及其在糖尿病肾病中的作用机制[J]. 生物技术进展, 2021, 11(1): 40-46. |
[15] | 马雪梅,张鑫,谢飞,赵鹏翔,张昭,仪杨,张晓康,马胜男,李秦剑,吕宝北,刘梦昱,YAO Mawulikplimi Adzavon,孙学军,李英贤. 氢气生物学作用的生物酶基础[J]. 生物技术进展, 2020, 10(1): 15-22. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 427
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 81
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 2021《生物技术进展》编辑部