生物技术进展 ›› 2023, Vol. 13 ›› Issue (3): 366-374.DOI: 10.19586/j.2095-2341.2023.0005
马晨(), 宋怡菲, 仪杨, 刘子怡, 谢飞(
), 马雪梅(
)
收稿日期:
2023-02-02
接受日期:
2023-03-16
出版日期:
2023-05-25
发布日期:
2023-06-12
通讯作者:
谢飞,马雪梅
作者简介:
马晨E-mail: mchen@bjut.edu.cn;
基金资助:
Chen MA(), Yifei SONG, Yang YI, Ziyi LIU, Fei XIE(
), Xuemei MA(
)
Received:
2023-02-02
Accepted:
2023-03-16
Online:
2023-05-25
Published:
2023-06-12
Contact:
Fei XIE,Xuemei MA
摘要:
氢气是一种无色无味的惰性气体,随着氢分子医学的发展,研究人员发现氢气对多种疾病都有很好的预防和治疗效果,但有关氢干预治疗性效应的作用机制及其具体靶点尚不明确,这些问题都等待着人们深入探索。研究发现,氢气的抗氧化、抗凋亡、调节代谢等都与线粒体有关,同时线粒体还与氢化酶和氢化酶体具有一定程度的同源性,这些发现为氢分子作用机制的研究奠定了基础。对目前已知的与线粒体相关的氢分子作用机制进行了总结,讨论了氢代谢与线粒体之间的关系,以期为后续研究氢分子生物学效应的作用机制提供参考。
中图分类号:
马晨, 宋怡菲, 仪杨, 刘子怡, 谢飞, 马雪梅. 氢气与线粒体作用关系的研究进展[J]. 生物技术进展, 2023, 13(3): 366-374.
Chen MA, Yifei SONG, Yang YI, Ziyi LIU, Fei XIE, Xuemei MA. Research Progress on the Relationship Between Hydrogen and Mitochondria[J]. Current Biotechnology, 2023, 13(3): 366-374.
1 | DOLE M, WILSON F R, FIFE W P. Hyperbaric hydrogen therapy: a possible treatment for cancer[J]. Science, 1975, 190(4210): 152-154. |
2 | GHARIB B, HANNA S, ABDALLAHI O M, et al.. Anti-inflammatory properties of molecular hydrogen: investigation on parasite-induced liver inflammation[J]. C. R. Acad. Sci. Ⅲ, 2001, 324(8): 719-724. |
3 | OHSAWA I, ISHIKAWA M, TAKAHASHI K, et al.. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals[J]. Nat. Med., 2007, 13(6): 688-694. |
4 | 赵鹏翔,谢飞,刘梦昱,等.氢气生物医学研究进展[J].生物技术进展,2021,11(4):503-517. |
5 | OHTA S. Molecular hydrogen as a preventive and therapeutic medical gas: initiation, development and potential of hydrogen medicine[J]. Pharmacol. Ther., 2014, 144(1): 1-11. |
6 | 马雪梅,张鑫,谢飞,等.氢气生物学作用的生物酶基础[J].生物技术进展,2020,10(1):15-22. |
7 | 陶鸽如,秦树存.氢生物医学效应在疏解自由基氧化应激的分子机制[J].生物技术进展,2022,12(4):490-496. |
8 | WOLF P G, BISWAS A, MORALES S E, et al.. H2 metabolism is widespread and diverse among human colonic microbes[J]. Gut Microb., 2016, 7(3): 235-245. |
9 | EFREMOV R G, SAZANOV L A. The coupling mechanism of respiratory complex I-a structural and evolutionary perspective[J]. Biochim. Biophys. Acta, 2012, 1817(10): 1785-1795. |
10 | LOGAN D C. Plant mitochondrial dynamics[J]. Biochim. Biophys. Acta, 2006, 1763(5): 430-441. |
11 | ISHIBASHI T. Therapeutic efficacy of molecular hydrogen: a new mechanistic insight[J]. Curr. Pharm. Des., 2019, 25(9): 946-955. |
12 | ISHIHARA G, KAWAMOTO K, KOMORI N, et al.. Molecular hydrogen suppresses superoxide generation in the mitochondrial complex I and reduced mitochondrial membrane potential[J]. Biochem. Biophys. Res. Commun., 2020, 522(4): 965-970. |
13 | HAN X C, YE Z H, HU H J, et al.. Hydrogen exerts neuroprotective effects by inhibiting oxidative stress in experimental diabetic peripheral neuropathy rats[J]. Med. Gas Res., 2023, 13(2): 72-77. |
14 | ZHENG Y, ZHANG Z, WANG T, et al.. Photodriven nanoreactor with a hydrogen-insulin double act repairs diabetic wounds through Nrf2 pathway activation[J/OL]. Chem. Eng. J., 2021, 425: 131800[2021-08-14]. . |
15 | SONG G, ZONG C, ZHANG Z, et al.. Molecular hydrogen stabilizes atherosclerotic plaque in low-density lipoprotein receptor-knockout mice[J]. Free Radical Bio. Med., 2015, 87: 58-68. |
16 | KAMIMURA N, ICHIMIYA H, IUCHI K, et al.. Molecular hydrogen stimulates the gene expression of transcriptional coactivator PGC-1α to enhance fatty acid metabolism[J/OL]. NPJ Aging Mech. Dis., 2016, 2: 160086[2023-03-10]. . |
17 | ZHAI X, CHEN X, LU J, et al.. Hydrogen-rich saline improves non‑alcoholic fatty liver disease by alleviating oxidative stress and activating hepatic PPARα and PPARγ[J]. Mol. Med. Rep., 2017, 15(3): 1305-1312. |
18 | KALKAVAN H, GREEN D R. MOMP, cell suicide as a BCL-2 family business[J]. Cell Death Differ., 2018, 25(1): 46-55. |
19 | LIU Q, LI B S, SONG Y J, et al.. Hydrogen-rich saline protects against mitochondrial dysfunction and apoptosis in mice with obstructive jaundice[J]. Mol. Med. Rep., 2016, 13(4): 3588-3596. |
20 | CHEN X, CUI J, ZHAI X, et al.. Inhalation of hydrogen of different concentrations ameliorates spinal cord injury in mice by protecting spinal cord neurons from apoptosis, oxidative injury and mitochondrial structure damages[J]. Cell Physiol. Biochem., 2018, 47(1): 176-190. |
21 | MO X Y, LI X M, SHE C S, et al.. Hydrogen-rich saline protects rat from oxygen glucose deprivation and reperusion-induced apoptosis through VDAC1 via Bcl-2[J]. Brain Res., 2019, 1706: 110-115. |
22 | YU Y, MA X, YANG T, et al.. Protective effect of hydrogen-rich medium against high glucose-induced apoptosis of Schwann cells in vitro[J]. Mol. Med. Rep., 2015, 12(3): 3986-3992. |
23 | LI S, FUJINO M, ICHIMARU N, et al.. Molecular hydrogen protects against ischemia-reperfusion injury in a mouse fatty liver model via regulating HO-1 and Sirt1 expression[J/OL]. Sci. Rep., 2018, 8(1): 14019[2023-03-10]. . |
24 | ZHENG M, YU H, XUE Y, et al.. The protective effect of hydrogen-rich water on rats with type 2 diabetes mellitus[J]. Mol. Cell Biochem., 2021, 476(8): 3089-3097. |
25 | MING Y, MA Q H, HAN X L, et al.. Molecular hydrogen improves type 2 diabetes through inhibiting oxidative stress[J]. Exp. Ther. Med., 2020, 20(1): 359-366. |
26 | NIU Y, NIE Q, DONG L, et al.. Hydrogen attenuates allergic inflammation by reversing energy metabolic pathway switch [J/OL]. Sci. Rep., 2020, 10(1): 1962[2023-03-10]. . |
27 | MARTINS A D, SÁ R, MONTEIRO M P, et al.. Ghrelin acts as energy status sensor of male reproduction by modulating Sertoli cells glycolytic metabolism and mitochondrial bioenergetics[J]. Mol. Cell Endocrinol., 2016, 434: 199-209. |
28 | BARAZZONI R, ZHU X, DEBOER M, et al.. Combined effects of ghrelin and higher food intake enhance skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rats with chronic kidney disease[J]. Kidney Int., 2010, 77(1): 23-28. |
29 | AMITANI H, ASAKAWA A, CHENG K, et al.. Hydrogen improves glycemic control in type1 diabetic animal model by promoting glucose uptake into skeletal muscle[J/OL]. PLoS ONE, 2013, 8(1): e53913[2023-03-10]. . |
30 | LUO M, LU J, LI C, et al.. Hydrogen improves exercise endurance in rats by promoting mitochondrial biogenesis[J/OL]. Genomics, 2022, 114(6): 110523[2023-03-10]. . |
31 | LIAN N, MAO X, SU Y, et al.. Hydrogen-rich medium ameliorates lipopolysaccharides-induced mitochondrial fission and dysfunction in human umbilical vein endothelial cells (HUVECs) via up-regulating HO-1 expression[J/OL]. Int. Immunopharmacol., 2022, 110: 108936[2023-03-10]. . |
32 | XIE K, WANG Y, YIN L, et al.. Hydrogen gas alleviates sepsis-induced brain injury by improving mitochondrial biogenesis through the activation of PGC-α in mice[J]. Shock, 2021, 55(1): 100-109. |
33 | WU X, LI X, LIU Y, et al.. Hydrogen exerts neuroprotective effects on OGD/R damaged neurons in rat hippocampal by protecting mitochondrial function via regulating mitophagy mediated by PINK1/Parkin signaling pathway[J]. Brain Res., 2018, 169: 889-898. |
34 | CHEN H, LIN H, DONG B, et al.. Hydrogen alleviates cell damage and acute lung injury in sepsis via PINK1/Parkin-mediated mitophagy[J]. Inflamm. Res., 2021, 70(8): 915-930. |
35 | CARCHMAN E H, WHELAN S, LOUGHRAN P, et al.. Experimental sepsis-induced mitochondrial biogenesis is dependent on autophagy, TLR4, and TLR9 signaling in liver[J]. FASEB J., 2013, 27(12): 4703-4711. |
36 | LV M, WANG C, LI F, et al.. Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy[J]. Protein Cell, 2017, 8(1): 25-38. |
37 | YAN M, YU Y, MAO X, et al.. Hydrogen gas inhalation attenuates sepsis-induced liver injury in a FUNDC1-dependent manner[J]. Int. Immunopharmacol., 2019, 71: 61-67. |
38 | MERKWIRTH C, JOVAISAITE V, DURIEUX J, et al.. Two conserved histone demethylases regulate mitochondrial stress-induced longevity[J]. Cell, 2016, 165(5): 1209-1223. |
39 | TIAN Y, GARCIA G, BIAN Q, et al.. Mitochondrial stress induces chromatin reorganization to promote longevity and UPR(mt)[J]. Cell, 2016, 165(5): 1197-1208. |
40 | ZHU L, LUO X, FU N, et al.. Mitochondrial unfolded protein response: a novel pathway in metabolism and immunity[J/OL]. Pharmacol. Res., 2021, 168: 105603[2023-03-10]. . |
41 | SOBUE S, INOUE C, HORI F, et al.. Molecular hydrogen modulates gene expression via histone modification and induces the mitochondrial unfolded protein response[J]. Biochem. Biophys. Res. Commun., 2017, 493(1): 318-324. |
42 | HASEGAWA T, ITO M, HASEGAWA S, et al.. Molecular hydrogen manages mitochondrial proteostatic stress and induces cellular response[J/OL]. FASEB J., 2020, 34: 1[2023-03-10]. . |
43 | HASEGAWA T, ITO M, HASEGAWA S, et al.. Molecular hydrogen enhances proliferation of cancer cells that exhibit potent mitochondrial unfolded protein response[J/OL]. Int. J. Mol. Sci., 2022, 23(5): 23052888[2023-03-10]. . |
44 | PAGGIO A, CHECCHETTO V, CAMPO A, et al.. Identification of an ATP-sensitive potassium channel in mitochondria[J]. Nature, 2019, 572(7771): 609-613. |
45 | YOSHIDA A, ASANUMA H, SASAKI H, et al.. H2 mediates cardioprotection via involvements of K (ATP) channels and permeability transition pores of mitochondria in dogs[J]. Cardiovasc. Drug. Ther., 2012, 26(3): 217-226. |
46 | ZHANG C S, HAN Q, SONG Z W, et al.. Hydrogen gas post-conditioning attenuates early neuronal pyroptosis in a rat model of subarachnoid hemorrhage through the mitoK (ATP) signaling pathway[J/OL]. Exp. Ther. Med., 2021, 22(2): 836[2023-03-10]. . |
47 | DONG A, YU Y, WANG Y, et al.. Protective effects of hydrogen gas against sepsis-induced acute lung injury via regulation of mitochondrial function and dynamics[J]. Int. Immunopharmacol., 2018, 653: 66-72. |
48 | DONG X H, LIU H, ZHANG M Z, et al.. Postconditioning with inhaled hydrogen attenuates skin ischemia/reperfusion injury through the RIP-MLKL-PGAM5/Drp1 necrotic pathway[J]. Am. J. Transl. Res., 2019, 11(1): 499-508. |
49 | 沈文飚,苏久厂,孙学军.氢气植物学效应的研究进展[J].南京农业大学学报,2018,41(3):392-401. |
50 | ZULFIQAR F, RUSSELL G, HANCOCK J T. Molecular hydrogen in agriculture[J/OL]. Planta, 2021, 254(3): 56[2023-03-10]. . |
51 | ZENG J, ZHANG M, SUN X. Molecular hydrogen is involved in phytohormone signaling and stress responses in plants[J/OL]. PLoS ONE, 2013, 8(8): e71038[2023-03-10]. . |
52 | HU H, ZHAO S, LI P, et al.. Hydrogen gas prolongs the shelf life of kiwifruit by decreasing ethylene biosynthesis[J]. Postharvest Biol. Tec., 2018, 135: 123-130. |
53 | XU S, JIANG Y, CUI W, et al.. Hydrogen enhances adaptation of rice seedlings to cold stress via the reestablishment of redox homeostasis mediated by miRNA expression[J]. Plant Soil, 2017, 414(1): 53-67. |
54 | CHEN M, CUI W, ZHU K, et al.. Hydrogen-rich water alleviates aluminum-induced inhibition of root elongation in alfalfa via decreasing nitric oxide production[J]. J. Hazard Mater., 2014, 267: 40-47. |
55 | CUI W, GAO C, FANG P, et al.. Alleviation of cadmium toxicity in Medicago sativa by hydrogen-rich water[J]. J. Hazard Mater., 2013, 260: 715-724. |
56 | JIN Q, ZHU K, CUI W, et al.. Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system[J]. Plant Cell Environ., 2013, 36(5): 956-969. |
57 | EMBLEY T M, MARTIN W. Eukaryotic evolution, changes and challenges[J]. Nature, 2006, 440(7084): 623-630. |
58 | BOXMA B, DE-GRAAF R M, VAN-DER S G W, et al.. An anaerobic mitochondrion that produces hydrogen[J]. Nature, 2005, 434(7029): 74-79. |
59 | BÖHM R, SAUTER M, BÖCK A. Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components[J]. Mol. Microbiol., 1990, 4(2): 231-243. |
60 | MOPARTHI V K, HÄGERHÄLL C. The evolution of respiratory chain complex I from a smaller last common ancestor consisting of 11 protein subunits[J]. J. Mol. Evol., 2011, 72(5-6): 484-497. |
61 | 宋怡菲,谢飞,马晨,等.高等植物氢化酶活性研究进展[J].生物技术进展,2022,12(4):481-489. |
62 | XIE Y, MAO Y, LAI D, et al.. H2 enhances arabidopsis salt tolerance by manipulating ZAT10/12-mediated antioxidant defence and controlling sodium exclusion[J/OL]. PLoS ONE, 2012, 7(11): e49800[2023-03-10]. . |
63 | KURATA Y. On the appearance of hydrogenase, nitrate reductase and aspartase during the ontogeny of the frog[J]. Exp. Cell Res., 1962, 284: 24-29. |
64 | ZHANG X, ZHANG Z F, WEI Y, et al.. Mitochondria in higher plants possess H2 evolving activity which is closely related to complex I[J/OL]. Arxiv: Biomol., 2020: 02132[2023-03-10]. . |
[1] | 张晓, 李才华, 王婧, 张兰兰, 牟晓雨, 王昕玥, 甘刘美, 周鹏展, 张锐. 基因加倍对棉花线粒体atpA基因RNA编辑率的影响[J]. 生物技术进展, 2022, 12(5): 737-745. |
[2] | 宋怡菲, 谢飞, 马晨, 马雪梅. 高等植物氢化酶活性研究进展[J]. 生物技术进展, 2022, 12(4): 481-489. |
[3] | 陶鸽如, 秦树存. 氢生物医学效应在疏解自由基氧化应激的分子机制[J]. 生物技术进展, 2022, 12(4): 490-496. |
[4] | 侯凯耀, 张二飞, 郑李娜, 陈红光, 谢克亮. 富氢液对脓毒症小鼠心肌细胞线粒体自噬的影响[J]. 生物技术进展, 2022, 12(4): 497-502. |
[5] | 商蕾,李佳腊,苏泽华,谢飞,马雪梅. 氢分子对肝癌细胞Huh7的影响[J]. 生物技术进展, 2020, 10(4): 400-408. |
[6] | 马雪梅,张鑫,谢飞,赵鹏翔,张昭,仪杨,张晓康,马胜男,李秦剑,吕宝北,刘梦昱,YAO Mawulikplimi Adzavon,孙学军,李英贤. 氢气生物学作用的生物酶基础[J]. 生物技术进展, 2020, 10(1): 15-22. |
[7] | 林晶晶,杨宇丰. 线粒体自噬的调控机制及其在相关疾病中的作用[J]. 生物技术进展, 2019, 9(5): 467-475. |
[8] | 寻治铭,赵清辉,琚芳迪,何晋,姚婷婷,赵鹏翔,马雪梅,谢飞. 氢分子在临床应用中的研究进展[J]. 生物技术进展, 2019, 9(3): 217-222. |
[9] | 王裴林,周利利,梁成真,孟志刚,郭三堆,张锐. 棉花线粒体基因cRT-PCR改良及其在寻找CMS相关基因中的应用[J]. 生物技术进展, 2019, 9(3): 303-308. |
[10] | 商蕾,李佳腊,苏泽华,谢飞,马雪梅. 氢分子对宫颈癌细胞HeLa的影响[J]. 生物技术进展, 2018, 8(4): 302-310. |
[11] | 李佳腊,张亚婷,谢飞. 氢分子在癌症防治中的应用进展[J]. 生物技术进展, 2016, 6(3): 174-178. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部