1 |
SUN H, SAEEDI P, KARURANGA S, et al.. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL]. Diabetes Res. Clin. Pract., 2022, 183: 109119[2024-03-26]. .
|
2 |
PELLE M C, PROVENZANO M, BUSUTTI M, et al.. Up-date on diabetic nephropathy [J/OL]. Life (Basel)., 2022,12(8):1202[2024-01-25]. .
|
3 |
ZHANG Y, JIN D, KANG X, et al.. Signaling pathways involved in diabetic renal fibrosis[J/OL]. Front. Cell Dev. Biol., 2021, 9: 696542[2024-03-26]. .
|
4 |
MARTÍNEZ-KLIMOVA E, APARICIO-TREJO O E, GÓMEZ-SIERRA T, et al.. Mitochondrial dysfunction and endoplasmic reticulum stress in the promotion of fibrosis in obstructive nephropathy induced by unilateral ureteral obstruction[J]. Biofactors, 2020, 46(5): 716-733.
|
5 |
AHMAD A A, DRAVES S O, ROSCA M. Mitochondria in diabetic kidney disease[J/OL]. Cells, 2021, 10(11): 2945[2024-03-26]. .
|
6 |
BAEK J, LEE Y H, JEONG H Y, et al.. Mitochondrial quality control and its emerging role in the pathogenesis of diabetic kidney disease[J]. Kidney Res. Clin. Pract., 2023, 42(5): 546-560.
|
7 |
ZHAO M, LI Y, LU C, et al.. PGC1α degradation suppresses mitochondrial biogenesis to confer radiation resistance in glioma[J]. Cancer Res., 2023, 83(7): 1094-1110.
|
8 |
TANRIOVER C, COPUR S, UCKU D, et al.. The mitochondrion: a promising target for kidney disease[J/OL]. Pharmaceutics, 2023, 15(2): 570[2024-03-26]. .
|
9 |
SHE Y, YU M, WANG L, et al.. Emerging protective actions of PGC-1α in diabetic nephropathy[J/OL]. Oxid. Med. Cell. Longev., 2022, 2022: 6580195[2024-03-26]. .
|
10 |
YUAN L, YUAN Y, LIU F, et al.. PGC-1α alleviates mitochondrial dysfunction via TFEB-mediated autophagy in cisplatin-induced acute kidney injury[J]. Aging (Albany NY), 2021, 13(6): 8421-8439.
|
11 |
FONTECHA-BARRIUSO M, LOPEZ-DIAZ A M, GUERRERO-MAUVECIN J, et al.. Tubular mitochondrial dysfunction, oxidative stress, and progression of chronic kidney disease[J/OL]. Antioxidants (Basel), 2022, 11(7): 1356[2024-03-26]. .
|
12 |
QIN X, JIANG M, ZHAO Y, et al.. Berberine protects against diabetic kidney disease via promoting PGC-1α-regulated mitochondrial energy homeostasis[J]. Br. J. Pharmacol., 2020, 177(16): 3646-3661.
|
13 |
BIAN C, REN H. Sirtuin family and diabetic kidney disease[J/OL]. Front. Endocrinol. (Lausanne), 2022, 13: 901066[2024-03-26]. .
|
14 |
ALA M. Sestrin2 signaling pathway regulates podocyte biology and protects against diabetic nephropathy[J/OL]. J. Diabetes Res., 2023, 2023: 8776878[2024-03-26]. .
|
15 |
NAM B Y, JHEE J H, PARK J, et al.. PGC-1α inhibits the NLRP3 inflammasome via preserving mitochondrial viability to protect kidney fibrosis[J/OL]. Cell Death Dis., 2022, 13(1): 31[2024-03-26]. .
|
16 |
ZHOU Y, LIU L, JIN B, et al.. Metrnl alleviates lipid accumulation by modulating mitochondrial homeostasis in diabetic nephropathy[J]. Diabetes, 2023, 72(5): 611-626.
|
17 |
CHAN D C. Mitochondrial dynamics and its involvement in disease[J]. Annu. Rev. Pathol., 2020, 15: 235-259.
|
18 |
NYENHUIS S B, WU X, STRUB M P, et al.. OPA1 helical structures give perspective to mitochondrial dysfunction[J]. Nature, 2023, 620(7976): 1109-1116.
|
19 |
QIN L, XI S. The role of mitochondrial fission proteins in mitochondrial dynamics in kidney disease[J/OL]. Int. J. Mol. Sci., 2022, 23(23): 14725[2024-03-26]. .
|
20 |
CHENG Y H, YAO C A, YANG C C, et al.. Sodium thiosulfate through preserving mitochondrial dynamics ameliorates oxidative stress induced renal apoptosis and ferroptosis in 5/6 nephrectomized rats with chronic kidney diseases[J/OL]. PLoS One, 2023, 18(2): e0277652[2024-03-26]. .
|
21 |
POOLSRI W, NOITEM R, JUTABHA P, et al.. Discovery of a Chalcone derivative as an anti-fibrotic agent targeting transforming growth factor-β1 signaling: potential therapy of renal fibrosis[J/OL]. Biomed. Pharmacother., 2023, 165: 115098[2024-03-26]. .
|
22 |
WANG Y, LU M, XIONG L, et al.. Drp1-mediated mitochondrial fission promotes renal fibroblast activation and fibrogenesis[J/OL]. Cell Death Dis., 2020, 11(1): 29[2024-03-26]. .
|
23 |
GALVAN D L, MISE K, DANESH F R. Mitochondrial regulation of diabetic kidney disease[J/OL]. Front. Med. (Lausanne), 2021, 8: 745279[2024-03-26]. .
|
24 |
关毅鸣,王丽妍,刘文虎.线粒体功能及其与急性肾损伤和糖尿病肾病的关系[J].医学研究杂志,2020,49(7):5-8.
|
|
GUAN Y M, WANG L Y, LIU W H. Mitochondrial function and its relationship with acute renal injury and diabetes nephropathy[J]. J. Med. Res., 2020,49(7):5-8.
|
25 |
NARONGKIATIKHUN P, CHATTIPAKORN S C, CHATTIPAKORN N. Mitochondrial dynamics and diabetic kidney disease: missing pieces for the puzzle of therapeutic approaches[J]. J. Cell. Mol. Med., 2022, 26(2): 249-273.
|
26 |
ZHONG Y, JIN R, LUO R, et al.. Diosgenin targets CaMKK2 to alleviate type II diabetic nephropathy through improving autophagy, mitophagy and mitochondrial dynamics[J/OL]. Nutrients, 2023, 15(16): 3554[2024-03-26]. .
|
27 |
FLEMMING N, PERNOUD L, FORBES J, et al.. Mitochondrial dysfunction in individuals with diabetic kidney disease: a systematic review[J/OL]. Cells, 2022, 11(16): 2481[2024-03-26]. .
|
28 |
JIANG N, ZHAO H, HAN Y, et al.. HIF-1α ameliorates tubular injury in diabetic nephropathy via HO-1-mediated control of mitochondrial dynamics[J/OL]. Cell Prolif., 2020, 53(11): e12909[2024-03-26]. .
|
29 |
WACHOSKI-DARK E, ZHAO T, KHAN A, et al.. Mitochondrial protein homeostasis and cardiomyopathy[J/OL]. Int. J. Mol. Sci., 2022, 23(6): 3353[2024-03-26]. .
|
30 |
ARRIETA A, BLACKWOOD E A, STAUFFER W T, et al.. Integrating ER and mitochondrial proteostasis in the healthy and diseased heart[J/OL]. Front. Cardiovasc. Med., 2020, 6: 193[2024-03-26]. .
|
31 |
DESHWAL S, FIEDLER K U, LANGER T. Mitochondrial proteases: multifaceted regulators of mitochondrial plasticity[J]. Annu. Rev. Biochem., 2020, 89: 501-528.
|
32 |
TODOSENKO N, KHAZIAKHMATOVA O, MALASHCHENKO V, et al.. Mitochondrial dysfunction associated with mtDNA in metabolic syndrome and obesity[J/OL]. Int. J. Mol. Sci., 2023, 24(15): 12012[2024-03-26]. .
|
33 |
SUN C L, VAN GILST M, CROWDER C M. Hypoxia-induced mitochondrial stress granules[J/OL]. Cell Death Dis., 2023, 14(7): 448[2024-03-26]. .
|
34 |
CATRINA S B, ZHENG X. Hypoxia and hypoxia-inducible factors in diabetes and its complications[J]. Diabetologia, 2021, 64(4): 709-716.
|
35 |
BAI M, WU M, JIANG M, et al.. LONP1 targets HMGCS2 to protect mitochondrial function and attenuate chronic kidney disease[J/OL]. EMBO Mol. Med., 2023, 15(2): e16581[2024-03-26]. .
|
36 |
ZHANG Y, WEN P, LUO J, et al.. Sirtuin 3 regulates mitochondrial protein acetylation and metabolism in tubular epithelial cells during renal fibrosis[J/OL]. Cell Death Dis., 2021, 12(9): 847[2024-03-26]. .
|
37 |
LI R, WANG Z, WANG Y, et al.. SIRT3 regulates mitophagy in liver fibrosis through deacetylation of PINK1/NIPSNAP1[J]. J. Cell. Physiol., 2023, 238(9): 2090-2102.
|
38 |
JIAN Y, YANG Y, CHENG L, et al.. Sirt3 mitigates LPS-induced mitochondrial damage in renal tubular epithelial cells by deacetylating YME1L1[J/OL]. Cell Prolif., 2023, 56(2): e13362[2024-03-26]. .
|
39 |
ONISHI M, YAMANO K, SATO M, et al.. Molecular mechanisms and physiological functions of mitophagy[J/OL]. EMBO J., 2021, 40(3): e104705[2024-03-26]. .
|
40 |
YAN C, GONG L, CHEN L, et al.. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis[J]. Autophagy, 2020, 16(3): 419-434.
|
41 |
SHAN Z, FA W H, TIAN C R, et al.. Mitophagy and mitochondrial dynamics in type 2 diabetes mellitus treatment[J]. Aging, 2022, 14(6): 2902-2919.
|
42 |
WANG D, KANG L, CHEN C A, et al.. Loss of legumain induces premature senescence and mediates aging-related renal fibrosis[J/OL]. Aging Cell, 2022, 21(3): e13574[2024-03-26]. .
|
43 |
JIN L, YU B, LIU G, et al.. Mitophagy induced by UMI-77 preserves mitochondrial fitness in renal tubular epithelial cells and alleviates renal fibrosis[J/OL]. FASEB J., 2022, 36(6): e22342[2024-03-26]. .
|
44 |
YOON Y M, GO G, YOON S, et al.. Melatonin treatment improves renal fibrosis via miR-4516/SIAH3/PINK1 axis[J/OL]. Cells, 2021, 10(7): 1682[2024-03-26]. .
|
45 |
LIU T, YANG Q, ZHANG X, et al.. Quercetin alleviates kidney fibrosis by reducing renal tubular epithelial cell senescence through the SIRT1/PINK1/mitophagy axis[J/OL]. Life Sci., 2020, 257: 118116[2024-03-26]. .
|
46 |
LIU L, BAI F, SONG H, et al.. Upregulation of TIPE1 in tubular epithelial cell aggravates diabetic nephropathy by disrupting PHB2 mediated mitophagy[J/OL]. Redox Biol., 2022, 50: 102260 [2024-03-26]. .
|
47 |
WANG X, SONG M, LI X, et al.. CERS6-derived ceramides aggravate kidney fibrosis by inhibiting PINK1-mediated mitophagy in diabetic kidney disease[J/OL]. Am. J. Physiol. Cell Physiol., 2023, 325(2):C538-C549[2024-03-26]. .
|
48 |
HAN Y C, TANG S Q, LIU Y T, et al.. AMPK agonist alleviate renal tubulointerstitial fibrosis via activating mitophagy in high fat and streptozotocin induced diabetic mice[J/OL]. Cell Death Dis., 2021, 12(10): 925[2024-03-26]. .
|
49 |
HUANG C, YI H, SHI Y, et al.. KCa3.1 mediates dysregulation of mitochondrial quality control in diabetic kidney disease[J/OL]. Front. Cell Dev. Biol., 2021, 9: 573814[2024-03-26]. .
|
50 |
JPARK S, KIM Y, LI C, et al.. Blocking CHOP-dependent TXNIP shuttling to mitochondria attenuates albuminuria and mitigates kidney injury in nephrotic syndrome[J/OL]. Proc. Natl. Acad. Sci. USA, 2022, 119(35): e2116505119[2024-03-26]. .
|
51 |
LIU Z, NAN P, GONG Y, et al.. Endoplasmic reticulum stress-triggered ferroptosis via the XBP1-Hrd1-Nrf2 pathway induces EMT progression in diabetic nephropathy[J/OL]. Biomed. Pharmacother., 2023, 164: 114897[2024-03-26]. .
|
52 |
INAGI R. Organelle stress and metabolic derangement in kidney disease[J/OL]. Int. J. Mol. Sci., 2022, 23(3): 1723[2024-03-26]. .
|
53 |
MAO H, CHEN W, CHEN L, et al.. Potential role of mitochondria-associated endoplasmic reticulum membrane proteins in diseases[J/OL]. Biochem. Pharmacol., 2022, 199: 115011[2024-03-26]. .
|
54 |
XUE M, FANG T, SUN H, et al.. PACS-2 attenuates diabetic kidney disease via the enhancement of mitochondria-associated endoplasmic reticulum membrane formation[J/OL]. Cell Death Dis., 2021, 12(12): 1107[2024-03-26]. .
|