1 |
SUN H, SAEEDI P, KARURANGA S, et al.. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045[J/OL]. Diabetes Res. Clin. Pract., 2022, 183: 109119[2021-12-06]. .
|
2 |
廖敏,杨洛,王珍,等.松果菊苷对db/db糖尿病小鼠心肌的保护作用[J].生物技术进展,2022,12(1):129-134.
|
|
LIAO M, YANG L, WANG Z, et al.. Protective effect of echinacoside on myocardium in db/db diabetic mice[J]. Curr. Biotechnol., 2022, 12(1): 129-134.
|
3 |
ZHENG H, ZHU H, LIU X, et al.. Mitophagy in diabetic cardiomyopathy: roles and mechanisms[J/OL]. Front. Cell Dev. Biol., 2021, 9: 750382[2021-09-27]. .
|
4 |
廖敏,杨洛,王珍,等.糖尿病心肌病发病机制的研究进展[J].生物技术进展,2021,11(6):700-704.
|
|
LIAO M, YANG L, WANG Z, et al.. Research progress on the pathogenesis of diabetic cardiomyopathy[J]. Curr. Biotechnol., 2021, 11(6): 700-704.
|
5 |
PETERSON L R, GROPLER R J. Metabolic and molecular imaging of the diabetic cardiomyopathy[J]. Circ. Res., 2020, 126(11): 1628-1645.
|
6 |
WU N N, ZHANG Y, REN J. Mitophagy, dynamicsmitochondrial, and homeostasis in cardiovascular aging[J/OL]. Oxid. Med. Cell. Longev., 2019, 2019: 9825061[2019-11-04]. .
|
7 |
BALABAN R S. Regulation of oxidative phosphorylation in the mammalian cell[J]. Am. J. Physiol., 1990, 258(Pt 1): 377-389.
|
8 |
ZHOU H, DAI Z, LI J, et al.. TMBIM6 prevents VDAC1 multimerization and improves mitochondrial quality control to reduce sepsis-related myocardial injury[J/OL]. Metabolism, 2023, 140: 155383[2023-01-02]. .
|
9 |
PLOUMI C, DASKALAKI I, TAVERNARAKIS N. Mitochondrial biogenesis and clearance: a balancing act[J]. FEBS J., 2017, 284(2): 183-195.
|
10 |
LI L, ZHANG Y, CHEN Z, et al.. SIRT1-dependent mitochondrial biogenesis supports therapeutic effects of vidarabine against rotenone-induced neural cell injury[J/OL]. Heliyon, 2023, 9(11): e21695[2023-10-26]. .
|
11 |
CHANG X, LI Y, CAI C, et al.. Mitochondrial quality control mechanisms as molecular targets in diabetic heart[J/OL]. Metabolism, 2022, 137: 155313[2022-09-17]. .
|
12 |
KIYUNA L A, CANDIDO D S, BECHARA L R G, et al.. 4-hydroxynonenal impairs miRNA maturation in heart failure via Dicer post-translational modification[J]. Eur. Heart J., 2023, 44(44): 4696-4712.
|
13 |
FONTANA F, MACCHI C, ANSELMI M, et al.. PGC1-α-driven mitochondrial biogenesis contributes to a cancer stem cell phenotype in melanoma[J/OL]. Biochim. Biophys. Acta Mol. Basis Dis., 2024, 1870(1): 166897[2023-09-25]. .
|
14 |
MAISSAN P, MOOIJ E J, BARBERIS M. Sirtuins-mediated system-level regulation of mammalian tissues at the interface between metabolism and cell cycle: a systematic review[J/OL]. Biology, 2021, 10(3): 194[2021-03-04]. .
|
15 |
ZHANG J, LI J, LIU Y, et al.. Effect of resveratrol on skeletal slow-twitch muscle fiber expression via AMPK/PGC-1α signaling pathway in bovine myotubes[J/OL]. Meat Sci., 2023, 204: 109287[2023-07-20]. .
|
16 |
WANG W, CHEN S, XU S, et al.. Jianpi Shengqing Huazhuo Formula improves abnormal glucose and lipid metabolism in obesity by regulating mitochondrial biogenesis[J/OL]. J. Ethnopharmacol., 2024, 319(Pt 1): 117102[2023-09-03]. .
|
17 |
ŻULIŃSKA S, STROSZNAJDER A K, STROSZNAJDER J B. The role of synthetic ligand of PPARα in regulation of transcription of genes related to mitochondria biogenesis and dynamic in an animal model of Alzheimer's disease[J]. Folia Neuropathol., 2023, 61(2): 138-143.
|
18 |
WANG L, BI X, HAN J. Silencing of peroxisome proliferator-activated receptor-alpha alleviates myocardial injury in diabetic cardiomyopathy by downregulating 3-hydroxy-3-methylglutaryl-coenzyme A synthase 2 expression[J]. IUBMB Life, 2020, 72(9): 1997-2009.
|
19 |
PACKER M. Autophagy-dependent and-independent modulation of oxidative and organellar stress in the diabetic heart by glucose-lowering drugs[J/OL]. Cardiovasc. Diabetol., 2020, 19(1): 62[2020-05-13]. .
|
20 |
ZHANG Z, ZHANG X, MENG L, et al.. Pioglitazone inhibits diabetes-induced atrial mitochondrial oxidative stress and improves mitochondrial biogenesis, dynamics, and function through the PPAR-γ/PGC-1α signaling pathway[J/OL]. Front. Pharmacol., 2021, 12: 658362[2021-06-14]. .
|
21 |
PUIGSERVER P, WU Z, PARK C W, et al.. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis[J]. Cell, 1998, 92(6): 829-839.
|
22 |
TAO L C, WANG T T, ZHENG L, et al.. The role of mitochondrial biogenesis dysfunction in diabetic cardiomyopathy[J]. Biomol. Ther., 2022, 30(5): 399-408.
|
23 |
SHELBAYEH O A, ARROUM T, MORRIS S, et al.. PGC-1α is a master regulator of mitochondrial lifecycle and ROS stress response[J/OL]. Antioxidants, 2023, 12(5): 1075[2023-05-10]. .
|
24 |
MUSHTAQ I, BASHIR Z, SARWAR M, et al.. N-acetyl cysteine, selenium, and ascorbic acid rescue diabetic cardiac hypertrophy via mitochondrial-associated redox regulators[J/OL]. Molecules, 2021, 26(23): 7285[2021-11-30]. .
|
25 |
HU T, WU Q, YAO Q, et al.. PRDM16 exerts critical role in myocardial metabolism and energetics in type 2 diabetes induced cardiomyopathy[J/OL]. Metabolism, 2023, 146: 155658[2023-07-09]. .
|
26 |
梁传财,易鹏,邱波.AMPK/SIRT1/PPARγ/PGC1α轴及其相关因子在骨关节炎脂质代谢中的作用[J].生物技术进展,2021,11(6):718-723.
|
|
LIANG C C, YI P, QIU B. Effects of AMPK/SIRT1/PPARγ/PGC1α axis and related factors on lipid metabolism in osteoarthritis[J]. Curr. Biotechnol., 2021, 11(6): 718-723.
|
27 |
LEE T W, BAI K J, LEE T I, et al.. PPARs modulate cardiac metabolism and mitochondrial function in diabetes[J/OL]. J. Biomed. Sci., 2017, 24(1): 5[2017-01-10]. .
|
28 |
KHAN D, ARA T, RAVI V, et al.. SIRT6 transcriptionally regulates fatty acid transport by suppressing PPARγ[J/OL]. Cell Rep., 2021, 35(9): 109190[2021-06-01]. .
|
29 |
CEFALO C M A, CINTI F, MOFFA S, et al.. Sotagliflozin, the first dual SGLT inhibitor: current outlook and perspectives[J/OL]. Cardiovasc. Diabetol., 2019, 18(1): 20[2019-02-28]. .
|
30 |
WEI D, LIAO L, WANG H, et al.. Canagliflozin ameliorates obesity by improving mitochondrial function and fatty acid oxidation via PPARα in vivo and in vitro [J/OL]. Life Sci., 2020, 247: 117414[2020-02-06]. .
|
31 |
REIFSNIDER O S, KANSAL A R, GANDHI P K, et al.. Cost-effectiveness of empagliflozin versus canagliflozin, dapagliflozin, or standard of care in patients with type 2 diabetes and established cardiovascular disease[J/OL]. BMJ Open Diabetes Res. Care, 2021, 9(1): e001313[2021-05-09]. .
|
32 |
KIM J H, LEE M, KIM S H, et al.. Sodium-glucose cotransporter 2 inhibitors regulate ketone body metabolism via inter-organ crosstalk[J]. Diabetes Obes. Metab., 2019, 21(4): 801-811.
|
33 |
WANG J, HUANG X, LIU H, et al.. Empagliflozin ameliorates diabetic cardiomyopathy via attenuating oxidative stress and improving mitochondrial function[J/OL]. Oxid. Med. Cell. Longev., 2022, 2022: 1122494[2022-05-09]. .
|
34 |
SHAO Q, MENG L, LEE S, et al.. Empagliflozin, a sodium glucose co-transporter-2 inhibitor, alleviates atrial remodeling and improves mitochondrial function in high-fat diet/streptozotocin-induced diabetic rats[J/OL]. Cardiovasc. Diabetol., 2019, 18(1): 165[2019-11-28]. .
|
35 |
KRISTENSEN S L, RØRTH R, JHUND P S, et al.. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials[J]. Lancet Diabetes Endocrinol., 2019, 7(10): 776-785.
|
36 |
VERMA S, MCGUIRE D K, BAIN S C, et al.. Effects of glucagon-like peptide-1 receptor agonists liraglutide and semaglutide on cardiovascular and renal outcomes across body mass index categories in type 2 diabetes: results of the LEADER and SUSTAIN 6 trials[J]. Diabetes Obes. Metab., 2020, 22(12): 2487-2492.
|
37 |
GIUGLIANO D, SCAPPATICCIO L, LONGO M, et al.. GLP-1 receptor agonists and cardiorenal outcomes in type 2 diabetes: an updated meta-analysis of eight CVOTs[J/OL]. Cardiovasc. Diabetol., 2021, 20(1): 189[2021-09-15]. .
|
38 |
ZHANG X, ZHANG Z, YANG Y, et al.. Alogliptin prevents diastolic dysfunction and preserves left ventricular mitochondrial function in diabetic rabbits[J/OL]. Cardiovasc. Diabetol., 2018, 17(1): 160[2018-12-27]. .
|
39 |
PHAM T K, NGUYEN T H T, YI J M, et al.. Evogliptin, a DPP-4 inhibitor, prevents diabetic cardiomyopathy by alleviating cardiac lipotoxicity in db/db mice[J]. Exp. Mol. Med., 2023, 55(4): 767-778.
|
40 |
FANG W J, LI X M, ZHOU X K, et al.. Resveratrol improves diabetic cardiomyopathy by preventing asymmetric dimethylarginine-caused peroxisome proliferator-activated receptor-γ coactivator-1α acetylation[J/OL]. Eur. J. Pharmacol., 2022, 936: 175342[2022-12-29]. .
|
41 |
XIONG Y, HAI C X, FANG W J, et al.. Endogenous asymmetric dimethylarginine accumulation contributes to the suppression of myocardial mitochondrial biogenesis in type 2 diabetic rats[J/OL]. Nutr. Metab., 2020, 17: 72[2020-08-24]. .
|
42 |
XIONG Y, HE Y L, LI X M, et al.. Endogenous asymmetric dimethylarginine accumulation precipitates the cardiac and mitochondrial dysfunctions in type 1 diabetic rats[J/OL]. Eur. J. Pharmacol., 2021, 902: 174081[2021-04-24]. .
|
43 |
MA T, HUANG X, ZHENG H, et al.. SFRP2 improves mitochondrial dynamics and mitochondrial biogenesis, oxidative stress, and apoptosis in diabetic cardiomyopathy[J/OL]. Oxid. Med. Cell. Longev., 2021, 2021: 9265016[2021-11-08]. .
|
44 |
YU L M, DONG X, XUE X D, et al.. Melatonin attenuates diabetic cardiomyopathy and reduces myocardial vulnerability to ischemia-reperfusion injury by improving mitochondrial quality control: role of SIRT6[J/OL]. J. Pineal Res., 2021, 70(1): e12698[2020-10-24]. .
|
45 |
CHANG X, ZHANG T, WANG J, et al.. SIRT5-related desuccinylation modification contributes to quercetin-induced protection against heart failure and high-glucose-prompted cardiomyocytes injured through regulation of mitochondrial quality surveillance[J/OL]. Oxid. Med. Cell. Longev., 2021, 2021: 5876841[2021-09-23]. .
|
46 |
LI Y, WEI X, LIU S L, et al.. Salidroside protects cardiac function in mice with diabetic cardiomyopathy via activation of mitochondrial biogenesis and SIRT3[J]. Phytother. Res., 2021, 35(8): 4579-4591.
|
47 |
KO T H, MARQUEZ J C, KIM H K, et al.. Resistance exercise improves cardiac function and mitochondrial efficiency in diabetic rat hearts[J]. Pflugers Arch. Eur. J. Physiol., 2018, 470(2): 263-275.
|
48 |
LI J, FENG Z, LU B, et al.. Resveratrol alleviates high glucose-induced oxidative stress and apoptosis in rat cardiac microvascular endothelial cell through AMPK/Sirt1 activation[J/OL]. Biochem. Biophys. Rep., 2023, 34: 101444[2023-03-01]. .
|
49 |
WANG H, BEI Y, LU Y, et al.. Exercise prevents cardiac injury and improves mitochondrial biogenesis in advanced diabetic cardiomyopathy with PGC-1α and Akt activation[J]. Cell. Physiol. Biochem., 2015, 35(6): 2159-2168.
|