生物技术进展 ›› 2017, Vol. 7 ›› Issue (1): 30-37.DOI: 10.3969/j.issn.2095-2341.2017.01.06

• 研究论文 • 上一篇    下一篇

拟南芥质体定位的叶酰谷氨酸合成酶基因在低氮条件下的功能分析

许博思1,孟红岩2,张春义1*,姜凌1   

  1. 1.中国农业科学院生物技术研究所, 北京 100081;
    2.福建省亚热带植物研究所, 福建 厦门 361006
  • 收稿日期:2016-10-23 出版日期:2017-01-25 发布日期:2016-12-02
  • 通讯作者: 张春义,研究员,博士生导师,主要从事植物发育与营养代谢的分子生物学研究。E-mail:chunyi.zhang @163.com
  • 作者简介:许博思,硕士研究生,研究方向为植物功能基因组学。E-mail: xbs2000@126.com。
  • 基金资助:
    国家973计划项目(2013CB127003)资助。

Functional Analysis of Plastidial Folylpolyglutamate Synthetase in Arabidopsis Under N-limited Conditions

XU Bosi, MENG Hongyan, ZHANG Chunyi, JIANG Ling   

  1. 1.Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
    2.Fujian Provincial Key Laboratory of Subtropical Plant Physiology and Biochemistry, Fujian Institute of Subtropical Botany, Fujian Xiamen 361006, China
  • Received:2016-10-23 Online:2017-01-25 Published:2016-12-02

摘要: 叶酰聚谷氨酸合成酶(folylpolyglutamate synthetase, FPGS)在细胞的不同位置负责将多个谷氨酸残基逐个加在单谷氨酸四氢叶酸(tetrahydrofolate, THF)的γ-羧基上,从而形成有活性的多尾形式四氢叶酸。AtDFB是定位在质体中的FPGS,利用AtDFB基因的T-DNA插入突变体Atdfb-3,通过比较野生型拟南芥及突变体在不同氮源条件下的生长状态以了解AtDFB基因的生物学功能。结果表明,低氮条件下AtDFB基因功能的缺失导致Atdfb-3突变体主根的急剧缩短,叶酸含量的明显下降;而在Atdfb-3突变体中过表达AtDFB基因后,在低氮条件下的表型恢复至野生型拟南芥水平,并且叶酸含量有所提高。综上所述,AtDFB基因在拟南芥叶酸合成代谢途径中发挥着重要作用,可能影响低氮环境下植物主根的发育。

关键词: 叶酸, AtDFB基因, 低氮胁迫, 发育, 拟南芥

Abstract: Folylpolyglutamate synthetase (FPGS) catalyzes the addition of glutamate residues to the γ-carboxyl of tetrahydrofolate in different positions, to form folylpolyglutamates. AtDFB is the FPGS that located in plastid of Arabidopsis thaliana. In this study the Arabidopsis T-DNA insertion mutant (Atdfb-3) of AtDFB gene was used to explore the function of AtDFB gene by comparing the phenotype of wild type and atdfb-3 under various nitrogen conditions. The results showed that Atdfb-3 mutant displayed shorter primary root length and decreased folate content, compared with the wild type under the nitrogen-limited condition. The phenotype of AtDFB overexpression line under Atdfb-3 background restored to the wild-type level, and the folate content increased under the nitrogen-limited condition. In conclusion, Arabidopsis AtDFB gene plays an important role in folate biosynthesis pathway, and affects the primary root development under the nitrogen-limited condition.

Key words: folate, AtDFB gene, nitrogen-limited condition, development, Arabidopsis