1 |
HUANG J, LOK V, NGAI C H, et al.. Worldwide burden of, risk factors for, and trends in pancreatic cancer[J]. Gastroenterology, 2021, 160(3): 744-754.
|
2 |
SIEGEL R L, MILLER K D, WAGLE N S, et al.. Cancer statistics, 2023[J]. Cancer J. Clin, 2023, 73(1): 17-48.
|
3 |
CALCINOTTO A, KOHLI J, ZAGATO E, et al.. Cellular senescence: aging, cancer, and injury[J]. Physiol. Rev., 2019, 99(2): 1047-1078.
|
4 |
SAUL D, KOSINSKY R L. Single-cell transcriptomics reveals the expression of aging- and senescence-associated genes in distinct cancer cell populations[J/OL]. Cells, 2021, 10(11): 3126[2024-03-12]. .
|
5 |
ZABRANSKY D J, JAFFEE E M, WEERARATNA A T. Shared genetic and epigenetic changes link aging and cancer[J]. Trends Cell Biol., 2022, 32(4): 338-350.
|
6 |
FANE M, WEERARATNA A T. How the ageing microenvironment influences tumour progression[J]. Nat. Rev. Cancer, 2020, 20(2): 89-106.
|
7 |
QUINN J J, CHANG H Y. Unique features of long non-coding RNA biogenesis and function[J]. Nat. Rev. Genet., 2016, 17(1): 47-62.
|
8 |
STATELLO L, GUO C J, CHEN L L, et al.. Gene regulation by long non-coding RNAs and its biological functions[J]. Nat. Rev. Mol. Cell Biol., 2021, 22(2): 96-118.
|
9 |
HUARTE M. The emerging role of lncRNAs in cancer[J]. Nat. Med., 2015, 21(11): 1253-1261.
|
10 |
BHAN A, SOLEIMANI M, MANDAL S S. Long noncoding RNA and cancer: a new paradigm[J]. Cancer Res., 2017, 77(15): 3965-3981.
|
11 |
ROBLESS E E, HOWARD J A, CASARI I, et al.. Exosomal long non-coding RNAs in the diagnosis and oncogenesis of pancreatic cancer[J]. Cancer Lett., 2021, 501: 55-65.
|
12 |
LI D, HE J, QIAN X, et al.. The involvement of lncRNAs in the development and progression of pancreatic cancer[J]. Cancer Biol. Ther., 2017, 18(12): 927-936.
|
13 |
VIVIAN J, RAO A A, NOTHAFT F A, et al.. Toil enables reproducible, open source, big biomedical data analyses[J]. Nat. Biotechnol., 2017, 35(4): 314-316.
|
14 |
YU G, WANG L G, HAN Y, et al.. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. Omics, 2012, 16(5): 284-287.
|
15 |
BRUNSON J C. Ggalluvial: layered grammar for alluvial plots[J/OL]. J. Open Source Softw., 2020, 5(49): 2017[2024-03-12]. .
|
16 |
NEWMAN A M, LIU C L, GREEN M R, et al.. Robust enumeration of cell subsets from tissue expression profiles[J]. Nat. Meth., 2015, 12(5): 453-457.
|
17 |
BECHT E, GIRALDO N A, LACROIX L, et al.. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression[J/OL]. Genome Biol., 2016, 17(1): 218[2024-03-12]. doi: 10.1186/s13059-016-1070-5 ..
|
18 |
HÄNZELMANN S, CASTELO R, GUINNEY J. GSVA gene set variation analysis for microarray and RNA-seq data[J/OL]. BMC Bioinform., 2013, 14: 7[2024-03-12]. .
|
19 |
LENZO F L, KATO S, PABLA S, et al.. Immune profiling and immunotherapeutic targets in pancreatic cancer[J/OL]. Ann. Transl. Med., 2021, 9(2): 119[2024-03-12]. .
|
20 |
PING H, JIA X, KE H. A novel ferroptosis-related lncRNAs signature predicts clinical prognosis and is associated with immune landscape in pancreatic cancer[J/OL]. Front. Genet., 2022, 13: 786689[2024-03-12]. .
|
21 |
KIRKEGÅRD J, MORTENSEN F V, HANSEN C P, et al.. Waiting time to surgery and pancreatic cancer survival: a nationwide population-based cohort study[J]. Eur. J. Surg. Oncol., 2019, 45(10): 1901-1905.
|
22 |
van der GEEST L G M, van EIJCK C H J, GROOT KOERKAMP B, et al.. Trends in treatment and survival of patients with nonresected, nonmetastatic pancreatic cancer: a population-based study[J]. Cancer Med., 2018, 7(10): 4943-4951.
|
23 |
YUAN J, DUAN F, ZHAI W, et al.. An aging-related gene signature-based model for risk stratification and prognosis prediction in breast cancer[J]. Int. J. Women Health, 2021, 13: 1053-1064.
|
24 |
WANG D, NING H, WU H, et al.. Construction and evaluation of a novel prognostic risk model of aging-related genes in bladder cancer[J]. Curr. Urol., 2023, 17(4): 236-245.
|
25 |
XU Q, CHEN Y. An aging-related gene signature-based model for risk stratification and prognosis prediction in lung adenocarcinoma[J/OL]. Front. Cell Dev. Biol., 2021, 9: 685379[2024-03-12]. .
|
26 |
刘文增,胡渊,张彩.胰腺癌的肿瘤微环境及其免疫治疗研究进展[J].中国免疫学杂志,2018,34(12):1901-1906.
|
|
LIU W Z, HU Y, ZHANG C. Research progress in tumor microenvironment and immunotherapy of pancreatic cancer[J]. Chin. J. Immunol., 2018, 34(12): 1901-1906.
|
27 |
TABIBZADEH S. Signaling pathways and effectors of aging[J]. Front. Biosci. Landmark Ed., 2021, 26(1): 50-96.
|
28 |
FLEMING T H, HUMPERT P M, NAWROTH P P, et al.. Reactive metabolites and AGE/RAGE-mediated cellular dysfunction affect the aging process: a mini-review[J]. Gerontology, 2011, 57(5): 435-443.
|
29 |
WAGHELA B N, VAIDYA F U, RANJAN K, et al.. AGE-RAGE synergy influences programmed cell death signaling to promote cancer[J]. Mol. Cell. Biochem., 2021, 476(2): 585-598.
|
30 |
REN X, CHEN C, LUO Y, et al.. lncRNA-PLACT1 sustains activation of NF-κB pathway through a positive feedback loop with IκBα/E2F1 axis in pancreatic cancer[J/OL]. Mol. Cancer, 2020, 19(1): 35[2024-03-12]. .
|
31 |
LIN J, ZHAI S, ZOU S, et al.. Positive feedback between lncRNA FLVCR1-AS1 and KLF10 may inhibit pancreatic cancer progression via the PTEN/AKT pathway[J/OL]. J. Exp. Clin. Cancer Res., 2021, 40(1): 316[2024-03-12]. .
|
32 |
CHENG Q, OUYANG X, ZHANG R, et al.. Senescence-associated genes and non-coding RNAs function in pancreatic cancer progression[J]. RNA Biol., 2020, 17(11): 1693-1706.
|
33 |
JIANG W, DU Y, ZHANG W, et al.. Construction of a prognostic model based on cuproptosis-related lncRNA signatures in pancreatic cancer[J/OL]. Can. J. Gastroenterol. Hepatol., 2022, 2022: 4661929[2024-03-12]. .
|
34 |
ZHAO K, LI X, SHI Y, et al.. A comprehensive analysis of pyroptosis-related lncRNAs signature associated with prognosis and tumor immune microenvironment of pancreatic adenocarcinoma[J/OL]. Front. Genet., 2022, 13: 899496[2024-03-12]. .
|
35 |
LI J, ZHANG J, TAO S, et al.. Prognostication of pancreatic cancer using the cancer genome atlas based ferroptosis-related long non-coding RNAs[J/OL]. Front. Genet., 2022, 13: 838021[2024-03-12]. .
|
36 |
JIAO Y, ZHOU J, JIN Y, et al.. Long non-coding RNA TDRKH-AS1 promotes colorectal cancer cell proliferation and invasion through the β-catenin activated Wnt signaling pathway[J/OL]. Front. Oncol., 2020, 10: 639[2024-03-12]. .
|
37 |
TAUBE J M, GALON J, SHOLL L M, et al.. Implications of the tumor immune microenvironment for staging and therapeutics[J]. Mod. Pathol., 2018, 31(2): 214-234.
|
38 |
LIN H J, LIU Y, CAROLAND K, et al.. Polarization of cancer-associated macrophages maneuver neoplastic attributes of pancreatic ductal adenocarcinoma[J/OL]. Cancers, 2023, 15(13): 3507[2024-03-12]. .
|
39 |
CHOUEIRY F, TOROK M, SHAKYA R, et al.. CD200 promotes immunosuppression in the pancreatic tumor microenvironment[J/OL]. J. Immunother. Cancer, 2020, 8(1): e000189[2024-03-12]. .
|
40 |
LIU S, ZHANG W, LIU K, et al.. CD160 expression on CD8+ T cells is associated with active effector responses but limited activation potential in pancreatic cancer[J]. Cancer Immunol. Immunother., 2020, 69(5): 789-797.
|
41 |
VONDERHEIDE R H, BAYNE L J. Inflammatory networks and immune surveillance of pancreatic carcinoma[J]. Curr. Opin. Immunol., 2013, 25(2): 200-205.
|
42 |
陈俊俊,黄浩,刘颖婷,等.胰腺癌免疫微环境组织驻留CD103+CD8+T细胞浸润分布及其临床意义[J].中华肿瘤防治杂志,2022,29(23):1659-1667.
|
|
CHEN J J, HUANG H, LIU Y T, et al.. Infiltration of tissue-resident CD103+CD8+T cells in the tumor microenvironment of pancreatic cancer and its clinical significance[J]. Chin. J. Cancer Prev. Treat., 2022, 29(23): 1659-1667.
|
43 |
CHIBAYA L, MURPHY K C, DEMARCO K D, et al.. EZH2 inhibition remodels the inflammatory senescence-associated secretory phenotype to potentiate pancreatic cancer immune surveillance[J]. Nat. Cancer, 2023, 4(6): 872-892.
|