生物技术进展 ›› 2024, Vol. 14 ›› Issue (3): 368-376.DOI: 10.19586/j.2095-2341.2023.0172
• 进展评述 • 上一篇
收稿日期:
2023-12-25
接受日期:
2024-02-05
出版日期:
2024-05-25
发布日期:
2024-06-18
通讯作者:
莫继先
作者简介:
徐畅 E-mail:m894981039@163.com。
基金资助:
Chang XU(), Tianyi LIU, Wenjia LIU, Limin ZHANG, Jixian MO(
)
Received:
2023-12-25
Accepted:
2024-02-05
Online:
2024-05-25
Published:
2024-06-18
Contact:
Jixian MO
摘要:
胞外多糖是由微生物合成的一种功能多样的聚糖化合物。近年来研究发现,胞外多糖具有吸附性、亲水性、粘结性及免疫活性等特性,在多学科研究中受到广泛关注。目前胞外多糖的生产和提纯过程存在成本高、收率低等问题,阻碍了其规模化生产和商业应用。系统介绍了胞外多糖的微生物来源、生物学特征和生理功能,重点阐述了几种具有工业应用潜力的胞外多糖的生物合成机制,列举了胞外多糖最新的应用方向,并对胞外多糖的生物合成机制以及胞外多糖的规模化生产和多领域应用进行了展望。希望为进一步开发利用胞外多糖产生菌的菌种资源、深入研究微生物胞外多糖功能和活性机制以及发酵生产过程、以及对胞外多糖在多学科和多领域的广泛应用的优化提供参考。
中图分类号:
徐畅, 刘天一, 刘文佳, 张俐敏, 莫继先. 微生物胞外多糖的来源、生物合成及功能研究进展[J]. 生物技术进展, 2024, 14(3): 368-376.
Chang XU, Tianyi LIU, Wenjia LIU, Limin ZHANG, Jixian MO. Research Progress in Source, Biosynthesis and Function of Microbial Exopolysaccharides[J]. Current Biotechnology, 2024, 14(3): 368-376.
EPS种类 | 分子式 | 结构特征 | 微生物菌株 | 参考文献 |
---|---|---|---|---|
右旋糖酐 | C18H32O16 | D⁃葡萄呋喃糖以α⁃1,6和少量α⁃1,3糖苷键链接 | Weissella confusa | [ |
凝结多糖 | (C6H10O5) n | D⁃葡萄糖残基经β⁃葡萄糖苷键形成的直链β⁃1,3葡聚糖 | Agrobacterium sp. | [ |
黄原胶 | C33H49O29 | β⁃1,4键连接的葡糖基主链与三糖单位的侧链组成 | Xanthomonas campestris | [ |
纤维素 | (C6H10O5) n | D⁃吡喃葡萄糖单体以β⁃1,4糖苷键聚合 | Enterobacter sp. | [ |
藻酸盐 | (NaC6H7O6) n | β⁃D⁃甘露糖醛酸和α⁃L⁃古洛糖通过α⁃1,4糖苷键链接 | Azotobacter vinelandii | [ |
果聚糖 | C18H32O16 | β⁃2,6糖苷键的果糖聚合物 | Tanticharoenia sakaeratensis | [ |
结冷胶 | C13H7F2N | 2个葡萄糖残基,1个葡萄糖醛酸残基和1个鼠李糖残基组成 | Sphingomonas paucimobilis | [ |
表1 原核微生物产生的主要胞外多糖
Table 1 Principal exopolysaccharides produced by prokaryotic microorganisms
EPS种类 | 分子式 | 结构特征 | 微生物菌株 | 参考文献 |
---|---|---|---|---|
右旋糖酐 | C18H32O16 | D⁃葡萄呋喃糖以α⁃1,6和少量α⁃1,3糖苷键链接 | Weissella confusa | [ |
凝结多糖 | (C6H10O5) n | D⁃葡萄糖残基经β⁃葡萄糖苷键形成的直链β⁃1,3葡聚糖 | Agrobacterium sp. | [ |
黄原胶 | C33H49O29 | β⁃1,4键连接的葡糖基主链与三糖单位的侧链组成 | Xanthomonas campestris | [ |
纤维素 | (C6H10O5) n | D⁃吡喃葡萄糖单体以β⁃1,4糖苷键聚合 | Enterobacter sp. | [ |
藻酸盐 | (NaC6H7O6) n | β⁃D⁃甘露糖醛酸和α⁃L⁃古洛糖通过α⁃1,4糖苷键链接 | Azotobacter vinelandii | [ |
果聚糖 | C18H32O16 | β⁃2,6糖苷键的果糖聚合物 | Tanticharoenia sakaeratensis | [ |
结冷胶 | C13H7F2N | 2个葡萄糖残基,1个葡萄糖醛酸残基和1个鼠李糖残基组成 | Sphingomonas paucimobilis | [ |
EPS种类 | 分子式 | 结构特征 | 微生物菌株 | 参考文献 |
---|---|---|---|---|
硬葡聚糖 | (C24H40O20) n | 由β⁃1,3和β⁃1,6键连接 | Sclerotium rolfsii | [ |
β⁃葡聚糖 | (C6H10O5) n | 葡萄糖经β⁃1,6糖苷键聚合 | Saccharomyces cerevisiae | [ |
裂褶多糖 | C24H42O21 | D⁃吡喃葡萄糖经β⁃1,3糖苷键聚合,每3个糖单元中含有1个支链 | Schizophyllum commune | [ |
普鲁兰多糖 | (C37H62O30) n | D⁃吡喃葡萄糖单体以β⁃1,4糖苷键聚合 | Aureobasidium pullulans | [ |
半乳聚糖 | C20H36O16 | D⁃半乳糖经过α⁃1,6、β⁃1,4和β⁃1,2,3等3种糖苷键聚合而成 | Cantharellus cibarius Fr. | [ |
表2 真核微生物产生的主要胞外多糖
Table 2 Principal exopolysaccharides produced by eukaryotic microorganisms
EPS种类 | 分子式 | 结构特征 | 微生物菌株 | 参考文献 |
---|---|---|---|---|
硬葡聚糖 | (C24H40O20) n | 由β⁃1,3和β⁃1,6键连接 | Sclerotium rolfsii | [ |
β⁃葡聚糖 | (C6H10O5) n | 葡萄糖经β⁃1,6糖苷键聚合 | Saccharomyces cerevisiae | [ |
裂褶多糖 | C24H42O21 | D⁃吡喃葡萄糖经β⁃1,3糖苷键聚合,每3个糖单元中含有1个支链 | Schizophyllum commune | [ |
普鲁兰多糖 | (C37H62O30) n | D⁃吡喃葡萄糖单体以β⁃1,4糖苷键聚合 | Aureobasidium pullulans | [ |
半乳聚糖 | C20H36O16 | D⁃半乳糖经过α⁃1,6、β⁃1,4和β⁃1,2,3等3种糖苷键聚合而成 | Cantharellus cibarius Fr. | [ |
1 | CHEN S M, ZHANG C M, PENG H, et al.. Exopolysaccharides from endophytic Glutamicibacter halophytocota KLBMP 5180 functions as bio-stimulants to improve tomato plants growth and salt stress tolerance[J/OL]. Int. J. Biol. Macromol., 2023, 253(1): 126717 [2024-03-15]. . |
2 | IBRAHIM H A H, ABOU ELHASSAYEB H E, EL-SAYED W M M. Potential functions and applications of diverse microbial exopolysaccharides in marine environments[J/OL]. J. Genet. Eng. Biotechnol., 2022, 20(1): 151 [2024-03-15]. . |
3 | 赵薇萍, 齐艺惠, 李晶晶, 等. 改良1,9-二甲基亚甲基蓝法定量检测岩藻多糖[J]. 生物技术进展, 2023, 13(5): 779-784. |
ZHAO W P, QI Y H, LI J J, et al.. Quantitative determination of fucoidan by improved 1, 9-dimethyl-methylene blue method[J]. Curr. Biotechnol., 2023, 13(5): 779-784. | |
4 | 鲍佳生, 潘丙珍, 乔栖梧, 等. 酵母生物活性物质及其化妆品功效研究进展[J]. 生物技术进展, 2023, 13(3): 345-352. |
BAO J S, PAN B Z, QIAO X W, et al.. Advances in yeast bioactive substances and their cosmetic efficacy[J]. Curr. Biotechnol., 2023, 13(3): 345-352. | |
5 | WANG Z, LIU X, BAO Y, et al.. Characterization and anti-inflammation of a polysaccharide produced by Chaetomium globosum CGMCC 6882 on LPS-induced RAW 264.7 cells[J/OL]. Carbohydr. Polym., 2021, 251: 117129 [2024-03-15]. . |
6 | LI F, JIAO X, ZHAO J, et al.. Antitumor mechanisms of an exopolysaccharide from Lactobacillus fermentum on HT-29 cells and HT-29 tumor-bearing mice[J]. Int. J. Biol. Macromol., 2022, 209: 552-562. |
7 | WANG J, ZHANG J, GUO H, et al.. Optimization of exopolysaccharide produced by Lactobacillus plantarum R301 and its antioxidant and anti-inflammatory activities[J/OL]. Foods, 2023, 12(13): 2481 [2024-03-15]. . |
8 | 王程, 窦文芳, 何丽丽. 微生物糖基转移酶催化合成槲皮素糖苷及其抗炎活性评价[J]. 生物技术进展, 2020, 10(2):170-175. |
WANG C, DOU W F, HE L L. Synthesis of quercetin glycoside catalyzed by microbial glycosyltransferase and evaluation of their anti-inflammatory activity[J]. Curr. Biotechnol., 2020, 10(2): 170-175. | |
9 | HU J, TIAN X, WEI T, et al.. Anti-Helicobacter pylori activity of a Lactobacillus sp. PW-7 exopolysaccharide[J/OL]. Foods, 2021, 10(10): 2453[2024-04-15].. |
10 | KOWSALYA M, VELMURUGAN T, MYTHILI R, et al.. Extraction and characterization of exopolysaccharides from Lactiplantibacillus plantarum strain PRK7 and PRK 11, and evaluation of their antioxidant, emulsion, and antibiofilm activities[J/OL]. Int. J. Biol. Macromol., 2023, 242(2): 124842 [2024-03-15]. . |
11 | POLANÍA A M, RAMÍREZ C, LONDOÑO L, et al.. Encapsulation of pineapple peel extracts by ionotropic gelation using corn starch, Weissella confusa exopolysaccharide, and sodium alginate as wall materials[J/OL]. Foods, 2023, 12(15): 2943 [2024-03-15]. . |
12 | 袁宇杰, 杨英, 储明, 等. 胞外聚合物对重金属及抗生素吸附研究进展[J]. 水处理技术, 2022, 48(5): 24-28. |
YUAN Y J, YANG Y, CHU M, et al.. Advances in adsorption of heavy metals and antibiotics by extracellular polymers[J]. Technol. Water Treatment, 2022, 48(5): 24-28. | |
13 | SALIMI F, FARROKH P. Recent advances in the biological activities of microbial exopolysaccharides[J/OL]. World J. Microbiol. Biotechnol., 2023, 39(8): 213 [2024-03-15]. . |
14 | WAOO A A, SINGH S, PANDEY A, et al.. Microbial exopolysaccharides in the biomedical and pharmaceutical industries[J/OL]. Heliyon, 2023, 9(8): e18613 [2024-03-15]. . |
15 | ZHAO D, JIANG J, LIU L, et al.. Characterization of exopolysaccharides produced by Weissella confusa XG-3 and their potential biotechnological applications[J]. Int. J. Biol. Macromol., 2021, 178: 306-315. |
16 | YOUNG E S, BUTLER J D, MOLESWORTH-KENYON S J, et al.. Biofilm-mediated fragmentation and degradation of microcrystalline cellulose by Cellulomonas flavigena KU (ATCC 53703)[J/OL]. Curr. Microbiol., 2023, 80(6): 200 [2024-03-15]. . |
17 | LIU Z, XU Y, WANG Z, et al.. Promoting substrates uptake and curdlan synthesis of Agrobacterium sp. by attenuating the exopolysaccharide encapsulation[J/OL]. Carbohydr. Polym., 2023, 315: 120941 [2024-03-15]. . |
18 | NEJADMANSOURI M, RAZMJOOEI M, SAFDARIANGHOMSHEH R, et al.. Semi-continuous production of xanthan in biofilm reactor using Xanthomonas campestris [J]. J. Biotechnol., 2021, 328: 1-11. |
19 | STEFFENS T, VORHÖLTER F J, TECKENTRUP J, et al.. Two flagellar mutants of Xanthomonas campestris are characterized by enhanced xanthan production and higher xanthan viscosity[J]. J. Biotechnol., 2022, 347: 9-17. |
20 | NAVYA P V, GAYATHRI V, SAMANTA D, et al.. Bacterial cellulose: a promising biopolymer with interesting properties and applications[J]. Int. J. Biol. Macromol., 2022, 220: 435-461. |
21 | GAO G, LIAO Z, CAO Y, et al.. Highly efficient production of bacterial cellulose from corn stover total hydrolysate by Enterobacter sp. FY-07[J/OL]. Bioresour. Technol., 2021, 341: 125781[2024-03-15]. . |
22 | NÚÑEZ C, LÓPEZ-PLIEGO L, AHUMADA-MANUEL C L, et al.. Genetic regulation of alginate production in Azotobacter vinelandii a bacterium of biotechnological interest: a mini-review[J/OL]. Front Microbiol., 2022, 13: 845473 [2024-03-15]. . |
23 | DUDUN A A, AKOULINA E A, ZHUIKOV V A, et al.. Competitive biosynthesis of bacterial alginate using Azotobacter vinelandii 12 for tissue engineering applications[J/OL]. Polym. Basel., 2021, 14(1): 131 [2024-03-15]. . |
24 | BOUALLEGUE A, CASILLO A, CHAARI F, et al.. Levan from a new isolated Bacillus subtilis AF17: purification, structural analysis and antioxidant activities[J]. Int. J. Biol. Macromol., 2020, 144: 316-324. |
25 | ARAMSANGTIENCHAI P, KONGMON T, PECHROJ S, et al.. Enhanced production and immunomodulatory activity of levan from the acetic acid bacterium, Tanticharoenia sakaeratensis [J]. Int. J. Biol. Macromol., 2020, 163: 574-581. |
26 | GOMES D, BATISTA-SILVA J P, SOUSA A, et al.. Progress and opportunities in Gellan gum-based materials: a review of preparation, characterization and emerging applications[J/OL]. Carbohydr. Polym., 2023, 311: 120782 [2024-03-15]. . |
27 | SUN L, YANG L, YUE M, et al.. Biosynthesis and physicochemical properties of low molecular weight gellan produced by a high-yield mutant of Sphingomonas paucimobilis ATCC 31461[J/OL]. Int. J. Biol. Macromol., 2023, 242(2): 124899[2024-03-15]. . |
28 | MADSEN M A, SEMERDZHIEV S, TWIGG J D, et al.. Environmental modulation of exopolysaccharide production in the cyanobacterium Synechocystis 6803[J]. Appl. Microbiol. Biotechnol., 2023, 107(19): 6121-6134. |
29 | 赵俊魁, 卢永忠. 蓝藻细胞工厂的研究进展[J]. 生物技术进展, 2023, 13(2): 174-180. |
ZHAO J K, LU Y Z. Research progress of cyanobacteria cell factories[J]. Curr. Biotechnol., 2023, 13(2): 174-180. | |
30 | LI X, LU Y, ADAMS G, et al. Characterisation of the molecular properties of scleroglucan as an alternative rigid rod molecule to xanthan gum for oropharyngeal dysphagia[J/OL]. Food Hydrocoll., 2019, 101: 105446 [2024-03-15]. . |
31 | ZENG W, WANG J, SHAN X, et al. Efficient production of scleroglucan by Sclerotium rolfsii and insights into molecular weight modification by high-pressure homogenization[J/OL]. Front. Bioeng. Biotechnol., 2021, 9: 748213 [2024-03-15]. . |
32 | ASCENCIO J, PHILIPPINI R, GOMES F, et al.. Comparative highly efficient production of tale-glucan by Lasiodiplodia theobromae CCT 3966 and its multiscale characterization[J/OL]. Fermentation, 2021, 7(3): 108 [2024-03-15]. . |
33 | GOU Z, PENG Z, WANG S, et al.. Efficient production and skincare activity evaluation of schizophyllan, a β-glucan derived from Schizophyllum commune NTU-1[J/OL]. Int. J. Biol. Macromol., 2023, 241: 124504 [2024-03-15]. . |
34 | CRUZ-SANTOS M M, ANTUNES F A F, ARRUDA G L, et al.. Production and applications of pullulan from lignocellulosic biomass: challenges and perspectives[J/OL]. Bioresour. Technol., 2023, 385: 129460 [2024-03-15]. . |
35 | ZENG N, ZHANG N, WANG D, et al.. Regulation of cell differentiation to promote pullulan synthesis in Aureobasidium pullulans NG[J]. Appl. Microbiol. Biotechnol., 2023, 107(22): 6761-6773. |
36 | ZHOU A, CHENG H, LIU H, et al.. Neuroprotection of low-molecular-weight galactan obtained from Cantharellus cibarius Fr. against Alzheimer's disease[J/OL]. Carbohydr. Polym., 2023, 316: 121033 [2024-03-15]. . |
37 | 李磊, 张红兵, 李文涛, 等. 光生物反应器培养微藻研究进展[J].生物技术进展, 2020, 10(2): 117-123. |
LI L, ZHANG H B, LI W T, et al.. Progress on photobioreactors for microalgae cultivation[J]. Curr. Biotechnol., 2020, 10(2): 117-123. | |
38 | TOUCHETEAU C, DEFFAINS V, GAIGNARD C, et al.. Role of some structural features in EPS from microalgae stimulating collagen production by human dermal fibroblasts[J/OL]. Bioengineered, 2023, 14(1): 2254027 [2024-03-15]. . |
39 | RANA S, UPADHYAY L S B. Microbial exopolysaccharides: synthesis pathways, types and their commercial applications[J]. Int. J. Biol. Macromol., 2020, 157: 577-583. |
40 | YUAN M, FU G, SUN Y, et al.. Biosynthesis and applications of curdlan[J/OL]. Carbohydr. Polym., 2021, 273: 118597 [2024-03-15]. . |
41 | 赵鑫, 熊健力, 任叶琳, 等. 细菌纤维素合成与鉴定研究综述[J]. 化工进展, 2020, 39(S2): 262-268. |
ZHAO X, XIONG J L, REN Y L, et al.. Synthesis and identification of bacterial cellulose[J]. Chem. Ind. Engin. Prog., 2020. 39(S2): 262-268. | |
42 | SONG J, QIU Y, ZHAO R, et al.. Transcriptomics and metabolomics analysis of Sclerotium rolfsii fermented with differential carbon sources[J/OL]. Foods, 2022, 11(22): 3706 [2024-03-15]. . |
43 | PETERSEN A B, TØNDERVIK A, GAARDLØS M, et al.. Mannuronate C-5 epimerases and their use in alginate modification[J]. Essays Biochem., 2023, 67(3): 615-627. |
44 | DEV M J, WARKE R G, WARKE G M, et al.. Advances in fermentative production, purification, characterization and applications of gellan gum[J/OL]. Bioresour. Technol., 2022, 359: 127498 [2024-03-15]. . |
45 | İSPIRLI H. Physicochemical characterization of dextran HE29 produced by the Leuconostoc citreum HE29 isolated from traditional fermented pickle[J/OL]. Molecules, 2023, 28(20): 7149[2024-03-15]. . |
46 | BALDUCCI E, PAPI F, CAPIALBI D E, et al.. Polysaccharides' structures and functions in biofilm architecture of antimicrobial-resistant (AMR) pathogens[J/OL]. Int. J. Mol. Sci., 2023, 24(4): 4030 [2024-03-15]. . |
47 | SAIDI N, DAVARZANI F, YOUSEFPOUR Z, et al.. Effects of sub-minimum inhibitory concentrations of gentamicin on alginate produced by clinical isolates of Pseudomonas aeruginosa [J/OL]. Adv. Biomed. Res., 2023, 12: 94[2024-03-15]. . |
48 | ZHAO C R, YOU Z L, CHEN D D, et al.. Structure of a fungal 1, 3-β-glucan synthase[J/OL]. Sci. Adv., 2023, 9(37): eadh7820 [2024-03-15]. . |
49 | 李慧芬, 方安然, 冯海霞, 等. 胞外多糖产生菌的筛选鉴定及其促生改土作用[J]. 微生物学通报, 2023, 50(5): 1941-1957. |
LI H F, FANG A R, FENG H X, et al.. Screening and identification of extracellular polysaccharide-producing strain and the influence on soil quality and crop growth[J]. Microbiol. China, 2023, 50(5): 1941-1957. | |
50 | PATEL M, ISLAM S, HUSAIN F M, et al.. Bacillus subtilis ER-08, a multifunctional plant growth-promoting rhizobacterium, promotes the growth of fenugreek (Trigonella foenum-graecum L.) plants under salt and drought stress[J/OL]. Microbiology, 2023, 14: 1208743[2024-03-15]. . |
51 | COBAN O, DE DEYN G B, VAN DER PLOEG M. Soil microbiota as game-changers in restoration of degraded lands[J/OL]. Science, 2022, 375(6584): abe0725[2024-03-15]. . |
52 | 户行宇, 姚梦柯, 孙婷, 等. 常温酸奶发酵剂产胞外多糖对DSS诱导肠炎的改善作用[J]. 食品工业科技, 2023, 44(12): 378-387. |
HU X Y, YAO M K, SUN T, et al.. Improvement effect of the EPS produced by long shelf-life yogurt culture on DSS-induced enteritis[J]. Sci. Technol. Food Ind., 2023, 44(12): 378-387. | |
53 | REDDY S P, BATCHU U R, BUDDANA S K, et al.. A comprehensive review on α-D-Glucans: structural and functional diversity, derivatization and bioapplications[J/OL]. Carbohydr. Res., 2021, 503: 108297[2024-03-15]. . |
54 | HAMIDI M, OKORO O V, MILAN P B, et al.. Fungal exopolysaccharides: properties, sources, modifications, and biomedical applications[J/OL]. Carbohydr. Polym., 2022, 284: 119152[2024-03-15]. . |
55 | 王雪杭, 李瑞东, 蒋云龙, 等.植物乳杆菌胞外多糖协同鱼明胶改善低脂酸奶品质特性[J]. 食品科学, 2023, 44(10): 73-81. |
WANG X H, LI R D, JIANG Y L, et al.. Effect of Lactobacillus plantarum exopolysaccharide combined with fish gelatin on the quality characteristics of low-fat yogurt[J]. Food Sci., 2023, 44(10): 73-81. | |
56 | KUMARI M, HARANAHALLI N B, PRASAD W G, et al.. Multi-faceted bioactivity assessment of an exopolysaccharide from Limosilactobacillus fermentum NCDC400: antioxidant, antibacterial, and immunomodulatory proficiencies[J/OL]. Foods, 2023, 12(19): 3595[2024-03-15]. . |
57 | KIBAR H, ARSLAN Y E, CEYLAN A, et al.. Weissella cibaria EIR/P2-derived exopolysaccharide: a novel alternative to conventional biomaterials targeting periodontal regeneration[J]. Int. J. Biol. Macromol., 2020, 165: 2900-2908. |
[1] | 孙佳琪, 郭嘉, 张闯, 柳青, 王梓钰, 夏涵超, 钱步轩, 赵方方, 王棋, 刘剑锋, 刘相国. 亚磷酸脱氢酶在基因工程改造微生物和植物中的研究进展[J]. 生物技术进展, 2024, 14(2): 173-181. |
[2] | 马云鹏, 朱静, 崔兴华. 基于机器学习的微生物溶解有机碳含量估测[J]. 生物技术进展, 2023, 13(4): 645-653. |
[3] | 邱思元, 徐晶雪, 段育阳, 赵金玉, 赵文婧, 张莉欣, 任国领. 甘露糖赤藓糖醇脂生产及应用研究进展[J]. 生物技术进展, 2023, 13(2): 210-219. |
[4] | 郝捷, 季嫱, 李力群, 郑超, 吴娜, 吴晗, 李选文, 孙志康. 生物酶和微生物技术改善烟叶香气的研究进展[J]. 生物技术进展, 2022, 12(6): 817-824. |
[5] | 范一铭, 高桂珍, 薛羽君, 伍晓明. 植物神经酸研究进展[J]. 生物技术进展, 2022, 12(5): 664-672. |
[6] | 刘培敏, 罗金萍, 高权新. 水产养殖环境微生物研究进展[J]. 生物技术进展, 2022, 12(5): 690-695. |
[7] | 李力群, 孙志康, 郝捷, 季嫱, 李选文, 吴晗, 吴娜, 郑超, 杨婧. 果胶酶生产及工业应用进展[J]. 生物技术进展, 2022, 12(4): 549-558. |
[8] | 李彦娇, 高媛, 王磊, 张兰. 三烯生育酚研究进展[J]. 生物技术进展, 2021, 11(6): 668-675. |
[9] | 李伟, 王冲, 刘嗣嘉, 杨敏一, 张云平. 宏基因组学技术在痤疮研究中的应用进展[J]. 生物技术进展, 2021, 11(6): 694-699. |
[10] | 张融雪,孙玥,苏京平,王胜军,佟卉,刘燕清,孙林静. 植物褪黑素研究进展[J]. 生物技术进展, 2021, 11(3): 297-303. |
[11] | 赵冬雪,刘璐,穆迎春,韩刚,张洪玉,房洪博,阮志勇4,宋金龙. 磺胺甲恶唑高效降解菌群的多样性分析和降解微生物的分离表征[J]. 生物技术进展, 2021, 11(2): 196-203. |
[12] | 玄琦月,韩雪,付英梅,. 肺外结核病微生物学诊断方法的研究和应用进展[J]. 生物技术进展, 2021, 11(1): 47-53. |
[13] | 张兆昆,,周文学,李永丽,,胡建华,,刘占英,. 核黄素发酵菌种改造研究进展[J]. 生物技术进展, 2021, 11(1): 54-60. |
[14] | 樊英,于晓清,李乐,王晓璐,叶海斌,胡发文,刁菁,刘洪军. 基于16S rRNA高通量测序分析大泷六线鱼表皮粘液及肠道内容物微生物多样性[J]. 生物技术进展, 2021, 11(1): 79-90. |
[15] | 王竹,余善君,吉林佳,李咏婷,杨传雄,黄燕妮. 海南红树林淡紫拟青霉胞外多糖提取条件的优化[J]. 生物技术进展, 2021, 11(1): 105-110. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部