生物技术进展 ›› 2025, Vol. 15 ›› Issue (2): 189-200.DOI: 10.19586/j.2095-2341.2024.0138
• 进展评述 • 上一篇
焦耀萱, 李敏(), 屈昕雅, 刘恬伶, 生秀梅, 周晓祥(
)
收稿日期:
2024-08-22
接受日期:
2024-12-27
出版日期:
2025-03-25
发布日期:
2025-04-29
通讯作者:
周晓祥
作者简介:
李敏 E-mail: limin@ujs.edu.cn;
基金资助:
Yaoxuan JIAO, Min LI(), Xinya QU, Tianling LIU, Xiumei SHENG, Xiaoxiang ZHOU(
)
Received:
2024-08-22
Accepted:
2024-12-27
Online:
2025-03-25
Published:
2025-04-29
Contact:
Xiaoxiang ZHOU
摘要:
抗生素耐药性已成为全球人类健康面临的重大威胁,医药、工业、农业生产以及生态等领域均受到多重耐药菌的严重威胁。多重耐药菌感染逐渐呈现高发病率、高死亡率的趋势。噬菌体可以特异性裂解多重耐药病原菌,然而由于噬菌体宿主谱狭窄、基因组中含有不利基因等因素的制约,当前只有部分噬菌体成功应用于防治多重耐药菌感染等领域。噬菌体基因工程具有可编辑、高效等优势,为拓宽噬菌体宿主谱、设计“安全、绿色、高效”的新型噬菌体提供了理论基础。综述了噬菌体基因工程技术的研究进展,以及噬菌体在临床抗耐药菌感染、农业生产和生态环境等方面的实际应用,为噬菌体的定向改造及其在各领域中的有效应用提供了理论支持和参考。
中图分类号:
焦耀萱, 李敏, 屈昕雅, 刘恬伶, 生秀梅, 周晓祥. 噬菌体基因工程技术与应用研究进展[J]. 生物技术进展, 2025, 15(2): 189-200.
Yaoxuan JIAO, Min LI, Xinya QU, Tianling LIU, Xiumei SHENG, Xiaoxiang ZHOU. Advances on Phage Genetic Engineering Technology and Applications[J]. Current Biotechnology, 2025, 15(2): 189-200.
方式 | 噬菌体 | 具体策略 | 参考文献 | 年份 |
---|---|---|---|---|
经典同源重组 | T4 | 通过基因片段重组配对修复被CRISPR切割破坏的基因组 | [ | 2021 |
T2 | 改造尾丝蛋白Gp38的结构 | [ | 2004 | |
T7 | 与相应质粒的同源重组构建工程化的T7噬菌体 | [ | 2020 | |
T7 | 特异性改造RBP | [ | 2021 | |
CRISPR/Cas | T4 | V型CRISPR/Cas12a系统编辑T4噬菌体基因组 | [ | 2021 |
T5 | 由Retron介导的诱变方案 | [ | 2021 | |
T7 | I~E型CRISPR/Cas系统编辑T7噬菌体基因组 | [ | 2014 | |
需钠弧菌噬菌体TT4 | CRISPR/Cas9系统编辑TT4噬菌体基因组 | [ | 2022 | |
大肠杆菌噬菌体 | CRISPR/Cas13a+抗CRISPR基因(acrVIA1) | [ | 2022 | |
φKZ、OMKO1和PaMx41噬菌体 | CRISPR/Cas13a+正向选择基因acrVIA1 | [ | 2022 | |
BRED | 分枝杆菌噬菌体BPs、ZoeJ | 使温和噬菌体改造为烈性噬菌体 | [ | 2019 |
T7 | 基因组进行单碱基改变和整个基因替换 | [ | 2020 | |
温和沙门氏菌噬菌体 | 进行裂解转换和溶原转换 | [ | 2014 | |
克雷伯氏菌噬菌体 | 建立了克雷伯氏菌噬菌体基因组的重组系统 | [ | 2017 | |
YAC | 铜绿假单胞菌噬菌体 | 噬菌体基因组的基因敲除 | [ | 2020 |
PICIs | 快速编辑酿酒酵母中的PICIs | [ | 2020 | |
pORTMAGE | T5、T7、P1和λ噬菌体 | 噬菌体基因组单碱基替换、插入 | [ | 2023 |
表1 噬菌体基因工程技术的经典应用
Table 1 Classic applications of phage genetic engineering technology
方式 | 噬菌体 | 具体策略 | 参考文献 | 年份 |
---|---|---|---|---|
经典同源重组 | T4 | 通过基因片段重组配对修复被CRISPR切割破坏的基因组 | [ | 2021 |
T2 | 改造尾丝蛋白Gp38的结构 | [ | 2004 | |
T7 | 与相应质粒的同源重组构建工程化的T7噬菌体 | [ | 2020 | |
T7 | 特异性改造RBP | [ | 2021 | |
CRISPR/Cas | T4 | V型CRISPR/Cas12a系统编辑T4噬菌体基因组 | [ | 2021 |
T5 | 由Retron介导的诱变方案 | [ | 2021 | |
T7 | I~E型CRISPR/Cas系统编辑T7噬菌体基因组 | [ | 2014 | |
需钠弧菌噬菌体TT4 | CRISPR/Cas9系统编辑TT4噬菌体基因组 | [ | 2022 | |
大肠杆菌噬菌体 | CRISPR/Cas13a+抗CRISPR基因(acrVIA1) | [ | 2022 | |
φKZ、OMKO1和PaMx41噬菌体 | CRISPR/Cas13a+正向选择基因acrVIA1 | [ | 2022 | |
BRED | 分枝杆菌噬菌体BPs、ZoeJ | 使温和噬菌体改造为烈性噬菌体 | [ | 2019 |
T7 | 基因组进行单碱基改变和整个基因替换 | [ | 2020 | |
温和沙门氏菌噬菌体 | 进行裂解转换和溶原转换 | [ | 2014 | |
克雷伯氏菌噬菌体 | 建立了克雷伯氏菌噬菌体基因组的重组系统 | [ | 2017 | |
YAC | 铜绿假单胞菌噬菌体 | 噬菌体基因组的基因敲除 | [ | 2020 |
PICIs | 快速编辑酿酒酵母中的PICIs | [ | 2020 | |
pORTMAGE | T5、T7、P1和λ噬菌体 | 噬菌体基因组单碱基替换、插入 | [ | 2023 |
1 | BANDY A. Ringing bells: Morganella morganii fights for recognition[J]. Public Health, 2020, 182: 45-50. |
2 | XIONG L Y, HU X L, WEI Y L. Advances in non-antibiotic therapy for drug-resistant bacteria[J]. China Biotechnol., 2023, 43(1): 50-58. |
3 | HESSE S, ADHYA S. Phage therapy in the twenty-first century: facing the decline of the antibiotic era; is it finally time for the age of the phage?[J]. Annu. Rev. Microbiol., 2019, 73: 155-174. |
4 | ZHONG L, GUO X, YAO Y, et al.. Phage-specific antibodies impair its antibacterial efficacy[J]. Acta Microbiol. Sin., 2022, 62(7): 2441-2454. |
5 | PRINCIPI N, SILVESTRI E, ESPOSITO S. Advantages and limitations of bacteriophages for the treatment of bacterial infections[J/OL]. Front. Pharmacol., 2019, 10: 513[2024-11-25]. . |
6 | YEHL K, LEMIRE S, YANG A C, et al.. Engineering phage host-range and suppressing bacterial resistance through phage tail fiber mutagenesis[J]. Cell, 2019, 179(2): 459-469. |
7 | REHMAN S, ALI Z, KHAN M, et al.. The dawn of phage therapy[J/OL]. Rev. Med. Virol., 2019, 29(4): e2041[2024-11-25]. . |
8 | GORDILLO ALTAMIRANO F L, BARR J J. Phage therapy in the postantibiotic era[J]. Clin. Microbiol. Rev., 2019, 32(2): e00066-18. |
9 | HATFULL G F, DEDRICK R M, SCHOOLEY R T. Phage therapy for antibiotic-resistant bacterial infections[J]. Annu. Rev. Med., 2022, 73: 197-211. |
10 | WU X, ZHU J, TAO P, et al.. Bacteriophage T4 escapes CRISPR attack by minihomology recombination and repair[J/OL]. mBio, 2021, 12(3): e0136121[2024-11-25]. . |
11 | YOICHI M, ABE M, MIYANAGA K, et al.. Alteration of tail fiber protein gp38 enables T2 phage to infect Escherichia coli O157: H7[J]. J. Biotechnol., 2005, 115(1): 101-107. |
12 | LIU Y, HUANG H, WANG H, et al.. A novel approach for T7 bacteriophage genome integration of exogenous DNA[J/OL]. J. Biol. Eng., 2020, 14: 2[2024-11-25]. . |
13 | DONG J, CHEN C, LIU Y, et al.. Engineering T4 bacteriophage for in vivo display by type V CRISPR-Cas genome editing[J]. ACS Synth. Biol., 2021, 10(10): 2639-2648. |
14 | RAMIREZ-CHAMORRO L, BOULANGER P, ROSSIER O. Strategies for bacteriophage T5 mutagenesis: expanding the toolbox for phage genome engineering[J/OL]. Front. Microbiol., 2021, 12: 667332[2024-11-25]. . |
15 | KIRO R, SHITRIT D, QIMRON U. Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system[J]. RNA Biol., 2014, 11(1): 42-44. |
16 | ZHANG X, ZHANG C, LIANG C, et al.. CRISPR-Cas9 based bacteriophage genome editing[J/OL]. Microbiol. Spectr., 2022, 10(4): e0082022[2024-11-25]. . |
17 | GUAN J, OROMÍ-BOSCH A, MENDOZA S D, et al.. Bacteriophage genome engineering with CRISPR-Cas13a[J]. Nat. Microbiol., 2022, 7(12): 1956-1966. |
18 | ADLER B A, HESSLER T, CRESS B F, et al.. Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing[J]. Nat. Microbiol., 2022, 7(12): 1967-1979. |
19 | DEDRICK R M, GUERRERO-BUSTAMANTE C A, GARLENA R A, et al.. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus [J]. Nat. Med., 2019, 25(5): 730-733. |
20 | JENSEN J D, PARKS A R, ADHYA S, et al.. λ recombineering used to engineer the genome of phage T7[J/OL]. Antibiotics (Basel), 2020, 9(11): 805[2024-11-25]. . |
21 | SHIN H, LEE J H, YOON H, et al.. Genomic investigation of lysogen formation and host lysis systems of the Salmonella temperate bacteriophage SPN9CC[J]. Appl. Environ. Microbiol., 2014, 80(1): 374-384. |
22 | PAN Y J, LIN T L, CHEN C C, et al.. Klebsiella phage ΦK64-1 encodes multiple depolymerases for multiple host capsular types[J]. J. Virol., 2017, 91(6): e02457-16. |
23 | PIRES D P, MONTEIRO R, MIL-HOMENS D, et al.. Designing P. aeruginosa synthetic phages with reduced genomes[J/OL]. Sci. Rep., 2021, 11(1): 2164[2024-11-25]. . |
24 | IBARRA-CHÁVEZ R, HAAG A F, DORADO-MORALES P, et al.. Rebooting synthetic phage-inducible chromosomal islands: one method to forge them all[J/OL]. Biodes. Res., 2020, 2020: 5783064[2024-11-25]. . |
25 | GOREN M G, MAHATA T, QIMRON U. An efficient, scarless, selection-free technology for phage engineering[J]. RNA Biol., 2023, 20(1): 830-835. |
26 | MAKAROVA K S, WOLF Y I, ALKHNBASHI O S, et al.. An updated evolutionary classification of CRISPR-Cas systems[J]. Nat. Rev. Microbiol., 2015, 13(11): 722-736. |
27 | GRIGONYTE A M, HARRISON C, MACDONALD P R, et al.. Comparison of CRISPR and marker-based methods for the engineering of phage T7[J/OL]. Viruses, 2020, 12(2): 193[2024-11-25]. . |
28 | DOUDNA J A, CHARPENTIER E. Genome editing: the new frontier of genome engineering with CRISPR-Cas9[J/OL]. Science, 2014, 346(6213): 1258096[2024-11-25]. . |
29 | TAO P, WU X, TANG W C, et al.. Engineering of bacteriophage T4 genome using CRISPR-Cas9[J]. ACS Synth. Biol., 2017, 6(10): 1952-1961. |
30 | HUPFELD M, TRASANIDOU D, RAMAZZINI L, et al.. A functional type II-a CRISPR-Cas system from Listeria enables efficient genome editing of large non-integrating bacteriophage[J]. Nucleic Acids Res., 2018, 46(13): 6920-6933. |
31 | SCHILLING T, DIETRICH S, HOPPERT M, et al.. A CRISPR-Cas9-based toolkit for fast and precise in vivo genetic engineering of Bacillus subtilis phages[J/OL]. Viruses, 2018, 10(5): 241[2024-11-25]. . |
32 | SHEN J, ZHOU J, CHEN G Q, et al.. Efficient genome engineering of a virulent Klebsiella bacteriophage using CRISPR-Cas9[J]. J. Virol., 2018, 92(17): e00534-18. |
33 | ZHANG X, WANG S, LI T, et al.. Bacteriophage: a useful tool for studying gut bacteria function of housefly larvae, Musca domestica [J/OL]. Microbiol. Spectr., 2021, 9(1): e0059921[2024-11-25]. . |
34 | ŁOBOCKA M, DĄBROWSKA K, GÓRSKI A. Engineered bacteriophage therapeutics: rationale, challenges and future[J]. BioDrugs, 2021, 35(3): 255-280. |
35 | LE S, HE X, TAN Y, et al.. Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004[J/OL]. PLoS One, 2013, 8(7): e68562[2024-11-25]. . |
36 | PEARSON R E, JURGENSEN S, SARKIS G J, et al.. Construction of D29 shuttle phasmids and luciferase reporter phages for detection of mycobacteria[J]. Gene, 1996, 183(1-2): 129-136. |
37 | MØLLER-OLSEN C, HO S F S, SHUKLA R D, et al.. Engineered K1F bacteriophages kill intracellular Escherichia coli K1 in human epithelial cells[J/OL]. Sci. Rep., 2018, 8(1): 17559[2024-11-25]. . |
38 | MARINELLI L J, PIURI M, SWIGONOVÁ Z, et al.. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes[J/OL]. PLoS One, 2008, 3(12): e3957[2024-11-25]. . |
39 | MARINELLI L J, HATFULL G F, PIURI M. Recombineering: a powerful tool for modification of bacteriophage genomes[J]. Bacteriophage, 2012, 2(1): 5-14. |
40 | MILHO C, SILLANKORVA S. Implication of a gene deletion on a Salmonella Enteritidis phage growth parameters[J/OL]. Virus Res., 2022, 308: 198654[2024-11-25]. . |
41 | CHEN Y, BATRA H, DONG J, et al.. Genetic engineering of bacteriophages against infectious diseases[J/OL]. Front. Microbiol., 2019, 10: 954[2024-11-25]. . |
42 | GIBSON D G, YOUNG L, R-YCHUANG, et al.. Enzymatic assembly of DNA molecules up to several hundred kilobases[J]. Nat. Methods, 2009, 6(5): 343-345. |
43 | PRYOR J M, POTAPOV V, BILOTTI K, et al.. Rapid 40 kb genome construction from 52 parts through data-optimized assembly design[J]. ACS Synth. Biol., 2022, 11(6): 2036-2042. |
44 | ANDO H, LEMIRE S, PIRES D P, et al.. Engineering modular viral scaffolds for targeted bacterial population editing[J]. Cell Syst., 2015, 1(3): 187-196. |
45 | DEMARINI D J, CREASY C L, LU Q, et al.. Oligonucleotide-mediated, PCR-independent cloning by homologous recombination[J]. Biotechniques, 2001, 30(3): 520-523. |
46 | JASCHKE P R, LIEBERMAN E K, RODRIGUEZ J, et al.. A fully decompressed synthetic bacteriophage øX174 genome assembled and archived in yeast[J]. Virology, 2012, 434(2): 278-284. |
47 | KILCHER S, STUDER P, MUESSNER C, et al.. Cross-genus rebooting of custom-made, synthetic bacteriophage genomes in L-form bacteria[J]. Proc. Natl. Acad. Sci. USA, 2018, 115(3): 567-572. |
48 | SMITH H O, HUTCHISON C A, PFANNKOCH C, et al.. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides[J]. Proc. Natl. Acad. Sci. USA, 2003, 100(26): 15440-15445. |
49 | SHIN J, JARDINE P, NOIREAUX V. Genome replication, synthesis, and assembly of the bacteriophage T7 in a single cell-free reaction[J]. ACS Synth. Biol., 2012, 1(9): 408-413. |
50 | RUSTAD M, EASTLUND A, JARDINE P, et al.. Cell-free TXTL synthesis of infectious bacteriophage T4 in a single test tube reaction[J/OL]. Synth. Biol. (Oxf), 2018, 3(1): ysy002[2024-11-25]. . |
51 | SHRIVASTAVA S R, SHRIVASTAVA P S, RAMASAMY J. Responding to the challenge of antibiotic resistance: World Health Organization[J/OL]. J. Res. Med. Sci., 2018, 23: 21[2024-11-25]. . |
52 | J-PPIRNAY, DJEBARA S, STEURS G, et al.. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study[J]. Nat. Microbiol., 2024, 9(6): 1434-1453. |
53 | 刘湧波.“抢救邱财康”成为带动我们一切工作的纲[J]. 科学通报, 1958(19):595-598. |
LIU Y B. “Rescuing Qiu Caikang” becomes the main line that drives all our work[J]. Chin. Sci. Bull., 1958, (19):595-598. | |
54 | BAO J, WU N, ZENG Y, et al.. Non-active antibiotic and bacteriophage synergism to successfully treat recurrent urinary tract infection caused by extensively drug-resistant Klebsiella pneumoniae [J]. Emerg. Microbes Infect., 2020, 9(1): 771-774. |
55 | SHEN M, ZHANG H, SHEN W, et al.. Pseudomonas aeruginosa MutL promotes large chromosomal deletions through non-homologous end joining to prevent bacteriophage predation[J]. Nucleic Acids Res., 2018, 46(9): 4505-4514. |
56 | NICK J A, DEDRICK R M, GRAY A L, et al.. Host and pathogen response to bacteriophage engineered against Mycobacterium abscessus lung infection[J]. Cell, 2022, 185(11): 1860-1874. |
57 | JAULT P, LECLERC T, JENNES S, et al.. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial[J]. Lancet Infect. Dis., 2019, 19(1): 35-45. |
58 | SARKER S A, SULTANA S, REUTELER G, et al.. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh[J]. EBioMedicine, 2016, 4: 124-137. |
59 | JIANG H, LI Y, COSNIER S, et al.. Exploring phage engineering to advance nanobiotechnology[J]. Mater. Today Nano, 2022, 19:100229. |
60 | NAMDEE K, KHONGKOW M, BOONRUNGSIMAN S, et al.. Thermoresponsive bacteriophage nanocarrier as a gene delivery vector targeted to the gastrointestinal tract[J]. Mol. Ther. Nucleic Acids, 2018, 12: 33-44. |
61 | KAO C Y, PAN Y C, HSIAO Y H, et al.. Improvement of gene delivery by minimal bacteriophage particles[J]. ACS Nano, 2023, 17(15): 14532-14544. |
62 | HAJITOU A, TREPEL M, LILLEY C E, et al.. A hybrid vector for ligand-directed tumor targeting and molecular imaging[J]. Cell, 2006, 125(2): 385-398. |
63 | ALLEN G L, GRAHN A K, KOURENTZI K, et al.. Expanding the chemical diversity of M13 bacteriophage[J/OL]. Front. Microbiol., 2022, 13: 961093[2024-11-25]. . |
64 | WANG Y, ZHANG G, ZHONG L, et al.. Filamentous bacteriophages, natural nanoparticles, for viral vaccine strategies[J]. Nanoscale, 2022, 14(16): 5942-5959. |
65 | BEDI D, GILLESPIE J W, PETRENKO V A Jr, et al.. Targeted delivery of siRNA into breast cancer cells via phage fusion proteins[J]. Mol. Pharm., 2013, 10(2): 551-559. |
66 | ZHANG Z, ROHWEDER P J, ONGPIPATTANAKUL C, et al.. A covalent inhibitor of K-Ras(G12C) induces MHC class I presentation of haptenated peptide neoepitopes targetable by immunotherapy[J]. Cancer Cell, 2022, 40(9): 1060-1069. |
67 | WANG T, D'SOUZA G G M, BEDI D, et al.. Enhanced binding and killing of target tumor cells by drug-loaded liposomes modified with tumor-specific phage fusion coat protein[J]. Nanomedicine (Lond), 2010, 5(4): 563-574. |
68 | LI Y, QU X, CAO B, et al.. Selectively suppressing tumor angiogenesis for targeted breast cancer therapy by genetically engineered phage[J/OL]. Adv. Mater., 2020, 32(29): e2001260[2024-11-25]. . |
69 | FUKUTA T, ASAI T, KIYOKAWA Y, et al.. Targeted delivery of anticancer drugs to tumor vessels by use of liposomes modified with a peptide identified by phage biopanning with human endothelial progenitor cells[J]. Int. J. Pharm., 2017, 524(1-2): 364-372. |
70 | STAQUICINI F I, SMITH T L, TANG F H F, et al.. Targeted AAVP-based therapy in a mouse model of human glioblastoma: a comparison of cytotoxic versus suicide gene delivery strategies[J]. Cancer Gene Ther., 2020, 27(5): 301-310. |
71 | LIU J, TANG W, BUDHU A, et al.. A viral exposure signature defines early onset of hepatocellular carcinoma[J]. Cell, 2020, 182(2): 317-328. |
72 | YUAN N, XIN G H, ZUO X X, et al.. Combination of phage display and SEREX for screening early lung cancer associated antigens[J]. J. Zhejiang Univ. Med. Sci., 2014, 43(4): 388-396. |
73 | KHOSRAVI S, AMINI R, ARABESTANI M R, et al.. Isolation of a lytic bacteriophage for Helicobacter pylori [J/OL]. Gene Rep., 2021, 23: 101107[2024-11-25]. . |
74 | ERIKSSON F, CULP W D, MASSEY R, et al.. Tumor specific phage particles promote tumor regression in a mouse melanoma model[J]. Cancer Immunol. Immunother., 2007, 56(5): 677-687. |
75 | HUAI Y, DONG S, ZHU Y, et al.. Genetically engineered virus nanofibers as an efficient vaccine for preventing fungal infection[J]. Adv. Healthc. Mater., 2016, 5(7): 786-794. |
76 | KESKIN D B, ANANDAPPA A J, SUN J, et al.. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial[J]. Nature, 2019, 565(7738): 234-239. |
77 | DONG S, SHI H, CAO D, et al.. Novel nanoscale bacteriophage-based single-domain antibodies for the therapy of systemic infection caused by Candida albicans [J/OL]. Sci. Rep., 2016, 6: 32256[2024-11-25]. . |
78 | BAO Q, LI X, HAN G, et al.. Phage-based vaccines[J]. Adv. Drug Deliv. Rev., 2019, 145: 40-56. |
79 | STAQUICINI D I, TANG F H F, MARKOSIAN C, et al.. Design and proof-of-concept for targeted phage-based COVID-19 vaccination strategies with a streamlined cold-free supply chain[J/OL]. bioRxiv, 2021: 2021.03.15.435496[2024-11-25]. . |
80 | GALLIOT B, CRESCENZI M, JACINTO A, et al.. Trends in tissue repair and regeneration[J]. Development, 2017, 144(3): 357-364. |
81 | WANG X, ZHU X, WANG D, et al.. Identification of a specific phage as growth factor alternative promoting the recruitment and differentiation of MSCs in bone tissue regeneration[J]. ACS Biomater. Sci. Eng., 2023, 9(5): 2426-2437. |
82 | PENG H, ROSSETTO D, MANSY S S, et al.. Treatment of wound infections in a mouse model using Zn(2+)-releasing phage bound to gold nanorods[J]. ACS Nano, 2022, 16(3): 4756-4774. |
83 | JANG W B, JI S T, PARK J H, et al.. Engineered M13 peptide carrier promotes angiogenic potential of patient-derived human cardiac progenitor cells and in vivo engraftment[J]. Tissue Eng. Regen. Med., 2020, 17(3): 323-333. |
84 | CHEN Y, LIU X, YANG M, et al.. Integration of genetically engineered virus nanofibers and fibrin to form injectable fibrous neuron-rich hydrogels and enable neural differentiation[J]. J. Mater. Chem. B, 2023, 11(4): 802-815. |
85 | JU Z, SUN W. Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles[J]. Drug Deliv., 2017, 24(1): 1898-1908. |
86 | LEE J H, WARNER C M, JIN H E, et al.. Production of tunable nanomaterials using hierarchically assembled bacteriophages[J]. Nat. Protoc., 2017, 12(9): 1999-2013. |
87 | BISOYI H K, LI Q. Liquid crystals: versatile self-organized smart soft materials[J]. Chem. Rev., 2022, 122(5): 4887-4926. |
88 | DOGIC Z, FRADEN S. Cholesteric phase in virus suspensions[J]. Langmuir, 2000, 16(20):7820-7824. |
89 | CAO B, LI Y, YANG T, et al.. Bacteriophage-based biomaterials for tissue regeneration[J]. Adv. Drug Deliv. Rev., 2019, 145: 73-95. |
90 | LEE S W, BELCHER A M. Virus-based fabrication of micro- and nanofibers using electrospinning[J]. Nano Lett., 2004, 4(3):387-390. |
91 | KIM C, LEE H, DEVARAJ V, et al.. Hierarchical cluster analysis of medical chemicals detected by a bacteriophage-based colorimetric sensor array[J/OL]. Nanomaterials (Basel), 2020, 10(1): 121[2024-11-25]. . |
92 | LEI F, ZENG F, YU X, et al.. Oral hydrogel nanoemulsion co-delivery system treats inflammatory bowel disease via anti-inflammatory and promoting intestinal mucosa repair[J/OL]. J. Nanobiotechnol., 2023, 21(1): 275[2024-11-25]. . |
93 | TIAN L, HE L, JACKSON K, et al.. Self-assembling nanofibrous bacteriophage microgels as sprayable antimicrobials targeting multidrug-resistant bacteria[J/OL]. Nat. Commun., 2022, 13(1): 7158[2024-11-25]. . |
94 | PEIVANDI A, JACKSON K, TIAN L, et al.. Inducing microscale structural order in phage nanofilament hydrogels with globular proteins[J]. ACS Biomater. Sci. Eng., 2022, 8(1): 340-347. |
95 | LLOYD J A, LIU Y, NG S H, et al.. Self-assembly of spherical and rod-shaped nanoparticles with full positional control[J]. Nanoscale, 2019, 11(47): 22841-22848. |
96 | CHUNG S Y, BLOKING J T, Y-MCHIANG. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nat. Mater., 2002, 1(2): 123-128. |
97 | SHI Z C, ATTIA A, YE W L, et al.. Synthesis, characterization and electrochemical performance of mesoporous FePO4 as cathode material for rechargeable lithium batteries[J]. Electrochim. Acta, 2008, 53(6): 2665-2673. |
98 | LEE Y, KIM J, YUN D S, et al.. Virus-templated Au and Au/Pt core/shell nanowires and their electrocatalytic activitives for fuel cell applications[J]. Energy Environ. Sci., 2012, 5(8): 8328-8334. |
99 | CHOI Y, LEE S Y. Biosynthesis of inorganic nanomaterials using microbial cells and bacteriophages[J]. Nat. Rev. Chem., 2020, 4(12): 638-656. |
100 | LEE J H, LEE J H, XIAO J, et al.. Vertical self-assembly of polarized phage nanostructure for energy harvesting[J]. Nano Lett., 2019, 19(4): 2661-2667. |
101 | SMOON J, CHOI E J, N-NJEONG, et al.. Research progress of M13 bacteriophage-based biosensors[J/OL]. Nanomaterials (Basel), 2019, 9(10): 1448[2024-11-25]. . |
102 | LI X, WANG H X, YIN X, et al.. Screening epitope peptides based on a phage-displayed random peptide and peptide microarrays to contribute to improving the diagnostic efficiency of systemic lupus erythematosus[J]. Immunol. Lett., 2023, 259: 30-36. |
103 | SEDKI M, CHEN X, CHEN C, et al.. Non-lytic M13 phage-based highly sensitive impedimetric cytosensor for detection of coliforms[J/OL]. Biosens. Bioelectron., 2020, 148: 111794[2024-11-25]. . |
104 | POURAKBARI R, YOUSEFI M, KHALILZADEH B, et al.. Early stage evaluation of colon cancer using tungsten disulfide quantum dots and bacteriophage nano-biocomposite as an efficient electrochemical platform[J]. Cancer Nanotechnol., 2022, 13(1):7. |
105 | MANIVANNAN S, SEO Y, KANG D, et al.. Colorimetric and optical Hg(Ⅱ) ion sensor developed with conjugates of M13-bacteriophage and silver nanoparticles[J]. New J. Chem., 2018, 42(24): 20007-20014. |
106 | MANIVANNAN S, PARK S, JEONG J, et al.. Aggregation-free optical and colorimetric detection of Hg(Ⅱ) with M13 bacteriophage-templated Au nanowires[J]. Biosens. Bioelectron., 2020, 161:112237. |
107 | NGUYEN T M, KIM W G, JAHN H, et al.. Programmable self-assembly of M13 bacteriophage for micro-color pattern with a tunable colorization[J]. RSC Adv., 2021, 11(51): 32305-32311. |
108 | MOON J S, PARK M, KIM W G, et al.. M-13 bacteriophage based structural color sensor for detecting antibiotics[J]. Sens. Actuat. B Chem., 2017, 240: 757-762. |
109 | XU H, SHEN J, YANG C T, et al.. Naked-eye counting of pathogenic viruses by phage-gold nanobiomaterials as probes[J/OL]. Mater. Today Adv., 2021, 10: 100122[2024-11-25]. . |
110 | 冀亚路,雷连成,冯新,等.一株牛源金黄色葡萄球菌噬菌体VB-SavM-JYL02生物学特性及基因组学研究[J].中国预防兽医学报,2020,42(10):1003-1008. |
JI Y L, LEI L C, FENG X, et al.. Biological characteristics and genomics of abovine-derived Staphylococcus aureus phage VB-SavM-JYL02[J]. Chin. J. Prev. Vet. Med., 2020, 42(10): 1003-1008. | |
111 | 吕可,赵前程,刘婧懿,等.噬菌体在水生动物病害防治中的应用问题和解决策略[J].水产科学,2020,39(6):964-971. |
LYU K, ZHAO Q C, LIU J Y, et al.. Application of bacteriophage in aquaculture: focusing on problems and solutions[J]. Fish. Sci., 2020, 39(6): 964-971. | |
112 | BALOGH B, CANTEROS B I, STALL R E, et al.. Control of Citrus canker and Citrus bacterial spot with bacteriophages[J]. Plant Dis., 2008, 92(7): 1048-1052. |
113 | 包红朵,呼圣杰,王冉.沙门氏菌噬菌体在动物和食品中的生物防控研究进展[J].食品安全质量检测学报,2022,13(2):605-611. |
BAO H D, HU S J, WANG R. Research progress on biological prevention and control of Salmonella phage in animals and foods[J]. J. Food Saf. Qual., 2022, 13(2): 605-611. | |
114 | MONK A B, REES C D, BARROW P, et al.. Bacteriophage applications: where are we now?[J]. Lett. Appl. Microbiol., 2010, 51(4): 363-369. |
115 | GUENTHER S, HERZIG O, FIESELER L, et al.. Biocontrol of Salmonella typhimurium in RTE foods with the virulent bacteriophage FO1-E2[J]. Int. J. Food Microbiol., 2012, 154(1-2): 66-72. |
116 | BAO H, ZHANG P, ZHANG H, et al.. Bio-control of Salmonella enteritidis in foods using bacteriophages[J]. Viruses, 2015, 7(8): 4836-4853. |
117 | DUC H M, SON H M, YI H P S, et al.. Isolation, characterization and application of a polyvalent phage capable of controlling Salmonella and Escherichia coli O157: H7 in different food matrices[J/OL]. Food Res. Int., 2020, 131: 108977[2024-11-25]. . |
118 | ZHANG H, WANG R, BAO H. Phage inactivation of foodborne Shigella on ready-to-eat spiced chicken[J]. Poult. Sci., 2013, 92(1): 211-217. |
119 | MOZAFFARI P, BERIZI E, HOSSEINZADEH S, et al.. Isolation and characterization of E. coli O157: H7 novel bacteriophage for controlling this food-borne pathogen[J/OL]. Virus Res., 2022, 315: 198754[2024-11-25]. . |
120 | LASAGABASTER A, JIMÉNEZ E, LEHNHERR T, et al.. Bacteriophage biocontrol to fight Listeria outbreaks in seafood[J/OL]. Food Chem. Toxicol., 2020, 145: 111682[2024-11-25]. . |
121 | 刘力萍,王宏华,王峰,等.副溶血弧菌CHY5-M1M噬菌体的分离鉴定及生物学特性分析[J].生物技术进展,2022,12(6):900-905. |
LIU L P, WANG H H, WANG F, et al.. Isolation, identification and biological characterization of Vibrio parahaemolyticus CHY5-M1M phage[J]. Curr. Biotechnol., 2022, 12(6): 900-905. | |
122 | SCHMIEGE D, ZACHARIAS N, SIB E, et al.. Prevalence of multidrug-resistant and extended-spectrum beta-lactamase-producing Escherichia coli in urban community wastewater[J/OL]. Sci. Total Environ., 2021, 785: 147269[2024-11-25]. . |
123 | LI M, SHI D, LI Y, et al.. Recombination of T4-like phages and its activity against pathogenic Escherichia coli in planktonic and biofilm forms[J]. Virol. Sin., 2020, 35(5): 651-661. |
124 | KORAJKIC A, KELLEHER J, SHANKS O C, et al.. Effectiveness of two wastewater disinfection strategies for the removal of fecal indicator bacteria, bacteriophage, and enteric viral pathogens concentrated using dead-end hollow fiber ultrafiltration (D-HFUF)[J/OL]. Sci. Total Environ., 2022, 831: 154861[2024-11-25]. . |
125 | PIRES D P, CLETO S, SILLANKORVA S, et al.. Genetically engineered phages: a review of advances over the last decade[J]. Microbiol. Mol. Biol. Rev., 2016, 80(3): 523-543. |
126 | NAIR A, KHAIRNAR K. Genetically engineered phages for therapeutics: proceed with caution[J/OL]. Nat. Med., 2019, 25(7): 1028[2024-11-25]. . |
[1] | 李仪扬, 周执政, 王淑菲, 刘博雅, 刘宇飞, 李孝彦, 隋宏书, 刘东巍. CRISPR/Cas9基因编辑技术在疾病治疗中的应用与展望[J]. 生物技术进展, 2025, 15(1): 35-42. |
[2] | 胡广, 王智, 付伟, 石雨婷, 陈珊珊, 罗亮, 魏霜. 基于TaqMan-qPCR技术的OsWx基因编辑水稻检测方法的建立[J]. 生物技术进展, 2025, 15(1): 86-92. |
[3] | 王晶, 关海涛, 张晓磊, 王堡槐, 刘宝海, 温洪涛. 农业基因编辑产品检测动态及发展趋势[J]. 生物技术进展, 2024, 14(5): 712-723. |
[4] | 贾名扬, 王磊, 陈俊峰, 张家庆, 闫祥洲, 邢宝松, 王璟. CRISPR/Cas9基因编辑技术在畜禽育种中的研究进展[J]. 生物技术进展, 2024, 14(4): 529-536. |
[5] | 张笑天, 王智, 朱鹏宇, 魏霜, 付伟, 黄春蒙, 李志红, 王慧煜, 焦悦. 一种基于定量PCR的CRISPR/Cas9基因编辑作物快速检测方法的研究[J]. 生物技术进展, 2023, 13(6): 907-912. |
[6] | 曹克浩, 朱军利, 何华山, 徐慰倬. 专利法第四次修改对生物技术专利申请和产业发展的影响[J]. 生物技术进展, 2023, 13(5): 663-670. |
[7] | 王阿利, 刘江东. CRISPR/Cas系统在斑马鱼中的研究进展[J]. 生物技术进展, 2023, 13(4): 485-491. |
[8] | 李敏, 魏文培, 乔莎, 郝东, 周浩, 赵硕文, 张立峰, 侯增淼. 重组贻贝粘蛋白的表征及功效评价[J]. 生物技术进展, 2023, 13(4): 596-603. |
[9] | 盖思宇, 陈子奇, 夏涵超, 赵仁贵, 刘相国. 基因编辑技术在植物启动子编辑中的研究进展[J]. 生物技术进展, 2023, 13(3): 321-328. |
[10] | 孙卉, 张春义, 姜凌. 药用植物分子农场研究进展[J]. 生物技术进展, 2023, 13(1): 65-71. |
[11] | 杨洋, 王凤林, 刘德, 罗园园, 朱建华. CRISPR⁃Cas9技术在植物次生代谢物生产中的研究进展[J]. 生物技术进展, 2022, 12(6): 806-816. |
[12] | 刘力萍, 王宏华, 王峰, 丁鹏, 孙子豪, 王哲, 乔颖, 侯竹美. 副溶血弧菌CHY5-M1M噬菌体的分离鉴定及生物学特性分析[J]. 生物技术进展, 2022, 12(6): 900-905. |
[13] | 于鲲, 薛佳琪, 王进宽, 余永涛. CRISPR/Cas9基因编辑技术在丝状真菌中的应用[J]. 生物技术进展, 2022, 12(5): 696-704. |
[14] | 高维崧, 窦金萍, 韦双, 刘兴健, 张志芳, 李轶女. CRISPR/Cas系统的分类及研究现状[J]. 生物技术进展, 2022, 12(4): 532-538. |
[15] | 党星, 郅斌伟, 曹克浩, 刘婷婷, 陈飚, 丁远杰. 转基因玉米生物育种技术的专利分析及产业发展建议[J]. 生物技术进展, 2022, 12(4): 614-622. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部