1 |
SORANZO N, PROVAN J, POWELL W. An example of microsatellite length variation in the mitochondrial genome of conifers[J]. Genome, 1999, 42(1): 158-161.
|
2 |
张晓,张锐,侯思宇,等.高等植物线粒体基因组研究进展[J].中国农业科技导报, 2011, 13(4): 23-31.
|
3 |
CHEVIGNY N, SCHATZ-DAAS D, LOTFI F, et al.. DNA repair and the stability of the plant mitochondrial genome[J/OL]. Int. J. Mol. Sci., 2020, 21(1): 328[2023-10-19]. .
|
4 |
ZHONG Y, YU R, CHEN J, et al.. Highly active repeat-mediated recombination in the mitogenome of the holoparasitic plant Aeginetia indica [J/OL]. Front. Plant Sci., 2022, 13: 988368[2023-10-19]. .
|
5 |
FILIP E, SKUZA L. Horizontal gene transfer involving chloroplasts[J/OL]. Int. J. Mol. Sci., 2021, 22(9): 4484[2023-10-19]. .
|
6 |
UNSELD M, MARIENFELD J R, BRANDT P, et al.. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366, 924 nucleotides[J]. Nat. Genet., 1997, 15(1): 57-61.
|
7 |
MUKHOPADHYAY J, WAI A, HUTCHISON L J, et al.. The mitogenome of Urnula craterium [J]. Can. J. Microbiol., 2022, 68(8): 561-568.
|
8 |
张晓,李才华,王婧,等.基因加倍对棉花线粒体atpA基因RNA编辑率的影响[J].生物技术进展, 2022, 12(5): 737-745.
|
9 |
叶楠.银杏线粒体基因组研究[D].南京:南京林业大学,2018.
|
10 |
WEI S, WANG X, BI C, et al.. Assembly and analysis of the complete Salix purpurea L. (Salicaceae) mitochondrial genome sequence[J/OL]. SpringerPlus, 2016, 5(1): 1894[2023-10-19]. .
|
11 |
李绪英,肖炳光,高玉龙,等.烟草叶绿体基因组和线粒体基因组SSR位点分析[J].西北植物学报,2011,31(12):2399-2405.
|
12 |
BI C, PATERSON A H, WANG X, et al.. Analysis of the complete mitochondrial genome sequence of the diploid cotton Gossypium raimondii by comparative genomics approaches[J/OL]. BioMed. Res. Int., 2016, 2016: 5040598[2023-10-19]. .
|
13 |
KUNTAL H, SHARMA V. In silico analysis of SSRs in mitochondrial genomes of plants[J]. Omics A J. Integr. Biol., 2011, 15(11): 783-789.
|
14 |
ISHII T, TAKAHASHI C, IKEDA N, et al.. Mitochondrial microsatellite variability in common wheat and its ancestral species[J]. Genes Genet. Syst., 2006, 81(3): 211-214.
|
15 |
NISHIKAWA T, VAUGHAN D A, KADOWAKI K. Phylogenetic analysis of Oryza species, based on simple sequence repeats and their flanking nucleotide sequences from the mitochondrial and chloroplast genomes[J]. Theor. Appl. Genet., 2005, 110(4): 696-705.
|
16 |
JARAMILLO-CORREA J P, AGUIRRE-PLANTER E, EGUIARTE L E, et al.. Evolution of an ancient microsatellite hotspot in the conifer mitochondrial genome and comparison with other plants[J]. J. Mol. Evol., 2013, 76(3): 146-157.
|
17 |
TOLLEFSRUD M M, KISSLING R, GUGERLI F, et al.. Genetic consequences of glacial survival and postglacial colonization in Norway spruce: combined analysis of mitochondrial DNA and fossil pollen[J]. Mol. Ecol., 2008, 17(18): 4134-4150.
|
18 |
TOLLEFSRUD M M, SØNSTEBØ J H, BROCHMANN C, et al.. Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies [J]. Heredity, 2009, 102(6): 549-562.
|
19 |
SPERISEN C, BÜCHLER U, GUGERLI F, et al.. Tandem repeats in plant mitochondrial genomes: application to the analysis of population differentiation in the conifer Norway spruce[J]. Mol. Ecol., 2001, 10(1): 257-263.
|
20 |
GODBOUT J, FAZEKAS A, NEWTON C H, et al.. Glacial vicariance in the Pacific Northwest: evidence from a lodgepole pine mitochondrial DNA minisatellite for multiple genetically distinct and widely separated refugia[J]. Mol. Ecol., 2008, 17(10): 2463-2475.
|
21 |
SEMERIKOV V L, PUTINTSEVA Y A, ORESHKOVA N V, et al.. Development of new mitochondrial DNA markers in Scots pine (Pinus sylvestris L.) for population genetic and phylogeographic studies[J]. Genetika, 2015, 51(12): 1386-1390.
|
22 |
SEMERIKOV V L, SEMERIKOVA S A, POLEZHAEVA M A, et al.. Southern montane populations did not contribute to the recolonization of West Siberian Plain by Siberian larch (Larix sibirica): a range-wide analysis of cytoplasmic markers[J]. Mol. Ecol., 2013, 22(19): 4958-4971.
|
23 |
AIZAWA M, YOSHIMARU H, TAKAHASHI M, et al.. Genetic structure of Sakhalin spruce (Picea glehnii) in northern Japan and adjacent regions revealed by nuclear microsatellites and mitochondrial gene sequences[J]. J. Plant Res., 2015, 128(1): 91-102.
|
24 |
HOSAKA K, SANETOMO R. Comparative differentiation in mitochondrial and chloroplast DNA among cultivated potatoes and closely related wild species[J]. Genes Genet. Syst., 2009, 84(5): 371-378.
|
25 |
VILLARREAL J C, FORREST L L, MCFARLAND K, et al.. Chloroplast, mitochondrial, and nuclear microsatellites from the southern Appalachian hornwort, Nothoceros aenigmaticus (Dendrocerotaceae) [J]. Am. J. Bot., 2012, 99(3): 88-90.
|
26 |
张先启,郭献平,刘玉芬,等.板栗品种线粒体SSR遗传多样性分析[J].北京农学院学报,2012,27(2):17-20.
|
27 |
RAJENDRAKUMAR P, BISWAL A K, BALACHANDRAN S M, et al.. A mitochondrial repeat specific marker for distinguishing wild abortive type cytoplasmic male sterile rice lines from their cognate isogenic maintainer lines[J]. Crop Sci., 2007, 47(1): 207-211.
|
28 |
WANG Q, ZHANG Y, FANG Z, et al.. Chloroplast and mitochondrial SSR help to distinguish allo-cytoplasmic male sterile types in cabbage (Brassica oleracea L. var. capitata) [J]. Mol. Breed., 2012, 30(2): 709-716.
|
29 |
ZHANG X, MENG Z G, ZHOU T, et al. Mitochondrial SCAR and SSR Markers for distinguishing cytoplasmic male sterile lines from their isogenic maintainer lines in cotton[J/OL]. Plant Breed., 2012, 131(4): 563-570.
|
30 |
DING J, SUN G, LI Q, et al.. Analysis of mitochondrial DNA polymorphism in the atpA region and design of simple sequence repeat and sequence characterized amplified region markers for distinguishing AD1, CMS-D2 and CMS-D8 cytoplasms in cotton (Gossypium spp.)[J]. Plant Breed., 2022, 141(3): 451-459.
|
31 |
李凤霞,杨爱国,崔萌萌,等.四种细胞质来源的烟草不育系线粒体SSR位点差异[J].作物学报,2011,37(12):2285-2292.
|
32 |
SABLOK G, MUDUNURI S B, PATNANA S, et al.. ChloroMitoSSRDB: open source repository of perfect and imperfect repeats in organelle genomes for evolutionary genomics[J]. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes, 2013, 20(2): 127-133.
|
33 |
SABLOK G, PADMA RAJU G V, MUDUNURI S B, et al.. ChloroMitoSSRDB 2.00: more genomes, more repeats, unifying SSRs search patterns and on-the-fly repeat detection[J/OL]. Database J. Biol. Databases Curation, 2015, 2015: bav084[2023-10-19]. .
|
34 |
KUMAR M, KAPIL A, SHANKER A. MitoSatPlant: mitochondrial microsatellites database of viridiplantae[J]. Mitochondrion, 2014, 19: 334-337.
|
35 |
BEIER S, THIEL T, MÜNCH T, et al.. MISA-web: a web server for microsatellite prediction[J]. Bioinformatics, 2017, 33(16): 2583-2585.
|
36 |
KUMAR S, SINGH A, ShANKER A. pSATdb: a database of mitochondrial common, polymorphic, and unique microsatellites[J]. Life Sci. Alliance, 2022, 5(6): 1-7.
|
37 |
MOKHTAR M M, HUSSEIN E H A, EL-ASSAL S E S, et al.. VfODB: a comprehensive database of ESTs, EST-SSRs, mtSSRs, microRNA-target markers and genetic maps in Vicia faba [J/OL]. AoB Plants, 2020, 12(6): plaa064[2023-10-19]. .
|
38 |
CHAUDHARY S, MISHRA B K, VIVEK T, et al.. PineElm_SSRdb: a microsatellite marker database identified from genomic, chloroplast, mitochondrial and EST sequences of pineapple (Ananas comosus (L.) Merrill)[J/OL]. Hereditas, 2016, 153: 16[2023-10-19]. .
|
39 |
AVVARU A K, SHARMA D, VERMA A, et al.. MSDB: a comprehensive, annotated database of microsatellites[J]. Nucleic Acids Res., 2020, 48(D1): 155-159.
|
40 |
MOKHTAR M M, ATIA M A M. SSRome: an integrated database and pipelines for exploring microsatellites in all organisms[J]. Nucleic Acids Res., 2019, 47(D1): 244-252.
|