[1] |
WANG Z, DAN W, ZHANG N, et al.. Colorectal cancer and gut microbiota studies in China[J/OL]. Gut Microbes, 2023, 15(1): 2236364[2025-05-06]. .
|
[2] |
YANG Y, HAN Z, LI X, et al.. Epidemiology and risk factors of colorectal cancer in China[J]. Chin. J. Cancer Res., 2020, 32(6): 729-741.
|
[3] |
FERNANDEZROZADILLA C, TIMOFEEVA M, CHEN Z, et al.. Deciphering colorectal cancer genetics through multi-omic analysis of 100, 204 cases and 154, 587 controls of European and East Asian ancestries[J]. Nat. Genet., 2023, 55(1): 89-99.
|
[4] |
卢明. 中国人群结直肠癌风险分层筛查方案的建立与评价[D]. 北京: 北京协和医学院,2023.
|
[5] |
ZHOU J, JI Q, LI Q. Resistance to anti-EGFR therapies in metastatic colorectal cancer: underlying mechanisms and reversal strategies[J/OL]. J. Exp. Clin. Cancer Res., 2021, 40(1): 328[2025-05-06]. .
|
[6] |
WIEDEMANN C, OBIKA K B, LIEBSCHER S, et al.. Backbone and side chain resonance assignment of the intrinsically disordered human DBNDD1 protein[J]. Biomol. NMR Assign., 2022, 16(2): 237-246.
|
[7] |
NG J Y, CHEW F T. A systematic review of skin ageing genes: gene pleiotropy and genes on the chromosomal band 16q24.3 may drive skin ageing[J/OL]. Sci. Rep., 2022, 12(1): 13099[2025-05-06]. .
|
[8] |
AUBURGER G, GISPERT S, BREHM N. Methyl-arginine profile of brain from aged PINK1-KO+A53T-SNCA mice suggests altered mitochondrial biogenesis[J/OL]. Parkinsons Dis., 2016, 2016: 4686185[2025-05-06]. .
|
[9] |
FANG S, LU J, ZHOU X, et al.. Functional annotation of melanoma risk loci identifies novel susceptibility genes[J]. Carcinogenesis, 2020, 41(4): 452-457.
|
[10] |
ASGARI M M, WANG W, IOANNIDIS N M, et al.. Identification of susceptibility loci for cutaneous squamous cell carcinoma[J]. J. Invest. Dermatol., 2016, 136(5): 930-937.
|
[11] |
TRAM V T N, KHOA TA H D, ANURAGA G, et al.. Dysbindin domain-containing 1 in prostate cancer: new insights into bioinformatic validation of molecular and immunological features[J/OL]. Int. J. Mol. Sci., 2023, 24(15): 11930[2025-05-06]. .
|
[12] |
BRADNER J E, HNISZ D, YOUNG R A. Transcriptional addiction in cancer[J]. Cell, 2017, 168(4): 629-643.
|
[13] |
MARTÍNEZ-JIMÉNEZ F, MUIÑOS F, SENTÍS I, et al.. A compendium of mutational cancer driver genes[J]. Nat. Rev. Cancer, 2020, 20(10): 555-572.
|
[14] |
DI Y, WANG Z, XIAO J, et al.. ACSL6-activated IL-18R1-NF-κB promotes IL-18-mediated tumor immune evasion and tumor progression[J/OL]. Sci. Adv., 2024, 10(38): eadp0719[2025-05-06]. .
|
[15] |
HOESEL B, SCHMID J A. The complexity of NF-κB signaling in inflammation and cancer[J/OL]. Mol. Cancer, 2013, 12: 86[2025-05-06]. .
|
[16] |
LI F, ZHANG J, ARFUSO F, et al. NF-kappaB in cancer therapy[J]. Arch. Toxicol., 2015, 89(5): 711-731.
|
[17] |
OH A, PARDO M, RODRIGUEZ A, et al.. NF-κB signaling in neoplastic transition from epithelial to mesenchymal phenotype[J/OL]. Cell Commun. Signal., 2023, 21(1): 291[2025-05-06]. .
|
[18] |
GONG H, CHEN S, LIU S, et al.. Overexpressing lipid raft protein STOML2 modulates the tumor microenvironment via NF-κB signaling in colorectal cancer[J/OL]. Cell. Mol. Life Sci., 2024, 81(1): 39[2025-05-06]. .
|
[19] |
LIU J L, XU X, RIXIATI Y, et al.. Dysfunctional circadian clock accelerates cancer metastasis by intestinal microbiota triggering accumulation of myeloid-derived suppressor cells[J]. Cell Metab., 2024, 36(6): 1320-1334.
|
[20] |
BAESSLER A, VIGNALI D A A. T cell exhaustion[J]. Annu. Rev. Immunol., 2024, 42: 179-206.
|
[21] |
邵莹, 兰燕, 宋冰, 等. CXCL8通过增加M2型巨噬细胞浸润及抑制CD8+T细胞浸润促进结直肠癌免疫抑制微环境的形成[J]. 细胞与分子免疫学杂志, 2024, 40(10): 880-886.
|
|
SHAO Y, LAN Y, SONG B, et al.. CXCL8 generates an immunosuppressive microenvironment in colorectal cancer through induction of M2 macrophage infiltration and inhibition of CD8+ T cell infiltration[J]. Chin. J. Cell. Mol. Immunol., 2024, 40(10): 880-886.
|