生物技术进展 ›› 2025, Vol. 15 ›› Issue (3): 432-445.DOI: 10.19586/j.2095-2341.2024.0184
海萨·艾也力汗null1(), 焦飞1, 刘鸿1, 呼德拉提·阿那斯null1, 沈玉帮2(
)
收稿日期:
2024-11-24
接受日期:
2025-02-17
出版日期:
2025-05-25
发布日期:
2025-07-01
通讯作者:
沈玉帮
作者简介:
海萨·艾也力汗 E-mail:hbahjan@126.com;
基金资助:
AYELHAN·Haysa1(), Fei JIAO1, Hong LIU1, ANASI·Hudelati1, Yubang SHEN2(
)
Received:
2024-11-24
Accepted:
2025-02-17
Online:
2025-05-25
Published:
2025-07-01
Contact:
Yubang SHEN
摘要:
研究旨在提升白斑狗鱼对极端高温的适应能力和满足向南部温暖地区养殖发展的需求,进一步发掘与其耐高温性状显著关联的基因位点和候选基因。首先基于前期对热敏感与耐高温群体的简化基因组测序数据,利用混合线性模型(mixed-linear model, MLM)进行全基因组关联分析(genome-wide association study, GWAS)筛选出与耐高温性状显著关联的单核苷酸多态性(single nucleotide polymorphism, SNP)位点;继而采用转录组测序技术对4组不同热处理幼鱼的脑组织进行基因差异表达分析;随后联合GWAS和转录组分析筛选出候选基因和SNP位点;最后利用Sanger测序技术,以耐高温组和参考组为材料,对显著关联的SNP位点加以验证。结果显示,GWAS分析获得了471个与耐高温性状显著关联的SNP位点。GO和KEGG分析显示,DEGs显著富集于内质网应激和免疫系统相关通路。GSEA分析显示,热胁迫84 h后先天免疫反应被激活,并且与NAD(+)ADP-核糖基转移酶活性相关的基因被诱导。先天免疫反应启动和调控相关基因的PPI分析显示,parp14、parp9、stat1和stat3是核心基因,同时也是互作基因。热应激反应中parp14可能通过调控stat1、stat3等下游效应基因来发挥保护细胞的作用。GWAS获得的SNP位点中,有2个SNP位点位于parp14基因的第三外显子。验证结果显示,parp14基因第三外显子中的2个SNP位点与耐高温性状显著相关,且为完全连锁不平衡,其中位点rsc.646T>C为错义突变,位点rsc.777G>A为同义突变。研究筛选出与白斑狗鱼耐高温相关的候选基因及与耐高温性状显著关联的2个SNP位点,可为白斑狗鱼耐高温性状的遗传机制和分子标记辅助育种提供理论依据。
中图分类号:
海萨·艾也力汗null, 焦飞, 刘鸿, 呼德拉提·阿那斯null, 沈玉帮. 联合GWAS和转录组分析挖掘与白斑狗鱼耐高温性状关联的SNP[J]. 生物技术进展, 2025, 15(3): 432-445.
AYELHAN·Haysa, Fei JIAO, Hong LIU, ANASI·Hudelati, Yubang SHEN. Integrating GWAS and Transcriptome Profiling to Identify SNP Markers Linked to High-temperature Tolerance in Esox lucius[J]. Current Biotechnology, 2025, 15(3): 432-445.
基因名称 | 引物名称 | 引物序列(5'→3') | 退火温度Tm/℃ | 目的 |
---|---|---|---|---|
parp14 | PARP14 DF1 PARP14DR1 | 5′-ACACTGCTCTGACATCGGAC-3′ 5′-CCTTTAGGTAGCGCAGGAGG-3′ | 60 | 荧光定量PCR |
parp9 | PARP9 DF23 PARP9 DR2 | 5′-TGGAGGTCTTGCACTAGCAC-3′ 5′-ACTGTATGTCTGTTTTCAACCTTC-3′ | 60 | 荧光定量PCR |
stat1 | STAT1a DF1 STAT1a DR1 | 5′-GAGGACCCCATTCACATGGC-3′ 5′-GTATGCTTCTGGCAACAGCC-3′ | 60 | 荧光定量PCR |
stat3 | STAT3 DF1 STAT3 DR1 | 5′-AGCCAACAAAGAGTCCCACG-3′ 5′-TACGCCGTAGGTTATGCTGG-3′ | 60 | 荧光定量PCR |
β-actin | β-actin F1 β-actin R1 | 5′-CAGAGCAAGAGAGGTATC-3′ 5′-GTTGTAGAAGGTGTGATG-3′ | 60 | 荧光定量PCR |
hsp90α | HSP90αF2 HSP90αR2 | 5′-GGCTGAGATTGCCCAGTTGA-3′ 5′-TTGCTAGGGTCTGTCAAGCTC-3′ | 60 | 荧光定量PCR |
hspa4 | HSPA4F1 HSPA4R1 | 5′-GCGACCGAAGTACACCATCA-3′ 5′-AAGCCCTGCCATGGAATCTC-3′ | 60 | 荧光定量PCR |
parp14 | 7125CXF2 7125CXR2 | 5′-ACTGTTTGAACAGCTCGTGGA-3′ 5′-GACCCCTAGATCCACCTGTACTT-3′ | 60 | SNP验证 |
表1 本研究所用引物
Table 1 Primers used in this study
基因名称 | 引物名称 | 引物序列(5'→3') | 退火温度Tm/℃ | 目的 |
---|---|---|---|---|
parp14 | PARP14 DF1 PARP14DR1 | 5′-ACACTGCTCTGACATCGGAC-3′ 5′-CCTTTAGGTAGCGCAGGAGG-3′ | 60 | 荧光定量PCR |
parp9 | PARP9 DF23 PARP9 DR2 | 5′-TGGAGGTCTTGCACTAGCAC-3′ 5′-ACTGTATGTCTGTTTTCAACCTTC-3′ | 60 | 荧光定量PCR |
stat1 | STAT1a DF1 STAT1a DR1 | 5′-GAGGACCCCATTCACATGGC-3′ 5′-GTATGCTTCTGGCAACAGCC-3′ | 60 | 荧光定量PCR |
stat3 | STAT3 DF1 STAT3 DR1 | 5′-AGCCAACAAAGAGTCCCACG-3′ 5′-TACGCCGTAGGTTATGCTGG-3′ | 60 | 荧光定量PCR |
β-actin | β-actin F1 β-actin R1 | 5′-CAGAGCAAGAGAGGTATC-3′ 5′-GTTGTAGAAGGTGTGATG-3′ | 60 | 荧光定量PCR |
hsp90α | HSP90αF2 HSP90αR2 | 5′-GGCTGAGATTGCCCAGTTGA-3′ 5′-TTGCTAGGGTCTGTCAAGCTC-3′ | 60 | 荧光定量PCR |
hspa4 | HSPA4F1 HSPA4R1 | 5′-GCGACCGAAGTACACCATCA-3′ 5′-AAGCCCTGCCATGGAATCTC-3′ | 60 | 荧光定量PCR |
parp14 | 7125CXF2 7125CXR2 | 5′-ACTGTTTGAACAGCTCGTGGA-3′ 5′-GACCCCTAGATCCACCTGTACTT-3′ | 60 | SNP验证 |
染色体 | SNP数量 | -lg P范围 | 解释率范围 | 染色体 | SNP数量 | -lg P范围 | 贡献率范围 |
---|---|---|---|---|---|---|---|
1 | 26 | 2.068 54~4.190 81 | 0.052 81~0.110 93 | 14 | 19 | 2.002 61~3.925 59 | 0.051 64~0.105 60 |
2 | 14 | 2.037 63~2.600 33 | 0.053 75~0.071 00 | 15 | 19 | 2.018 18~3.392 17 | 0.053 42~0.097 52 |
3 | 20 | 2.080 40~8.906 37 | 0.053 88~0.227 68 | 16 | 20 | 2.002 18~3.256 40 | 0.051 70~0.086 90 |
4 | 10 | 1.274 66~4.011 90 | 0.053 13~0.086 69 | 17 | 13 | 2.062 98~3.935 54 | 0.056 49~0.085 32 |
5 | 20 | 2.021 82~3.791 88 | 0.052 90~0.101 19 | 18 | 10 | 2.028 26~2.557 52 | 0.052 32~0.068 71 |
6 | 15 | 2.048 66~3.624 94 | 0.054 89~0.100 13 | 19 | 28 | 2.040 01~3.675 18 | 0.038 05~0.098 28 |
7 | 33 | 2.017 73~3.899 15 | 0.058 34~0.107 22 | 20 | 16 | 2.003 93~3.493 91 | 0.051 71~0.094 90 |
8 | 24 | 2.003 05~3.902 85 | 0.052 64~0.101 25 | 21 | 16 | 2.068 54~5.305 96 | 0.055 92~0.146 60 |
9 | 8 | 2.011 89~2.920 82 | 0.053 10~0.076 02 | 22 | 14 | 2.032 92~3.729 37 | 0.052 75~0.104 19 |
10 | 22 | 2.060 48~3.485 21 | 0.053 71~0.094 63 | 23 | 17 | 2.005 24~3.549 60 | 0.053 08~0.077 53 |
11 | 31 | 2.014 12~3.316 12 | 0.051 87~0.089 56 | 24 | 23 | 2.034 33~9.322 39 | 0.052 48~0.265 20 |
12 | 28 | 2.026 87~3.287 20 | 0.055 55~0.088 94 | 25 | 12 | 2.364 52~3.221 60 | 0.061 59~0.068 63 |
13 | 13 | 2.004 36~2.463 44 | 0.037 09~0.066 66 |
表2 GWAS分析结果
Table 2 GWAS analysis results
染色体 | SNP数量 | -lg P范围 | 解释率范围 | 染色体 | SNP数量 | -lg P范围 | 贡献率范围 |
---|---|---|---|---|---|---|---|
1 | 26 | 2.068 54~4.190 81 | 0.052 81~0.110 93 | 14 | 19 | 2.002 61~3.925 59 | 0.051 64~0.105 60 |
2 | 14 | 2.037 63~2.600 33 | 0.053 75~0.071 00 | 15 | 19 | 2.018 18~3.392 17 | 0.053 42~0.097 52 |
3 | 20 | 2.080 40~8.906 37 | 0.053 88~0.227 68 | 16 | 20 | 2.002 18~3.256 40 | 0.051 70~0.086 90 |
4 | 10 | 1.274 66~4.011 90 | 0.053 13~0.086 69 | 17 | 13 | 2.062 98~3.935 54 | 0.056 49~0.085 32 |
5 | 20 | 2.021 82~3.791 88 | 0.052 90~0.101 19 | 18 | 10 | 2.028 26~2.557 52 | 0.052 32~0.068 71 |
6 | 15 | 2.048 66~3.624 94 | 0.054 89~0.100 13 | 19 | 28 | 2.040 01~3.675 18 | 0.038 05~0.098 28 |
7 | 33 | 2.017 73~3.899 15 | 0.058 34~0.107 22 | 20 | 16 | 2.003 93~3.493 91 | 0.051 71~0.094 90 |
8 | 24 | 2.003 05~3.902 85 | 0.052 64~0.101 25 | 21 | 16 | 2.068 54~5.305 96 | 0.055 92~0.146 60 |
9 | 8 | 2.011 89~2.920 82 | 0.053 10~0.076 02 | 22 | 14 | 2.032 92~3.729 37 | 0.052 75~0.104 19 |
10 | 22 | 2.060 48~3.485 21 | 0.053 71~0.094 63 | 23 | 17 | 2.005 24~3.549 60 | 0.053 08~0.077 53 |
11 | 31 | 2.014 12~3.316 12 | 0.051 87~0.089 56 | 24 | 23 | 2.034 33~9.322 39 | 0.052 48~0.265 20 |
12 | 28 | 2.026 87~3.287 20 | 0.055 55~0.088 94 | 25 | 12 | 2.364 52~3.221 60 | 0.061 59~0.068 63 |
13 | 13 | 2.004 36~2.463 44 | 0.037 09~0.066 66 |
位点 | 基因型 | 基因型频率 | χ2 | 等位基因 | 等位基因频率 | χ2 | P | ||
---|---|---|---|---|---|---|---|---|---|
参考组 | 耐高温组 | 参考组 | 耐高温组 | ||||||
rsc.646T>C | TT | 33/0.465 | 22/0.733 | 6.705 | T | 98/0.690 | 50/0.833 | 4.415 | 0.035 6 |
CC | 6/0.085 | 2/0.067 | C | 44/0.310 | 10/0.167 | ||||
CT | 32/0.451 | 6/0.200 | |||||||
rsc.777G>A | GG | 33/0.465 | 22/0.733 | 6.705 | G | 98/0.690 | 50/0.833 | 4.415 | 0.035 6 |
AA | 6/0.085 | 2/0.067 | A | 44/0.310 | 10/0.167 | ||||
GA | 32/0.451 | 6/0.200 | |||||||
rsc.966C>T | TT | 5/0.070 | 2/0.067 | 5.237 | C | 99/0.697 | 49/0.817 | 3.074 | 0.079 5 |
CC | 33/0.465 | 21/0.700 | T | 43/0.303 | 11/0.183 | ||||
TC | 33/0.465 | 7/0.233 |
表3 3个SNP位点在对照组和耐高温组中的基因型和等位基因统计分析
Table 3 Statistical analysis of genotypes and alleles of the three SNPs check points in control and high temperature tolerance group
位点 | 基因型 | 基因型频率 | χ2 | 等位基因 | 等位基因频率 | χ2 | P | ||
---|---|---|---|---|---|---|---|---|---|
参考组 | 耐高温组 | 参考组 | 耐高温组 | ||||||
rsc.646T>C | TT | 33/0.465 | 22/0.733 | 6.705 | T | 98/0.690 | 50/0.833 | 4.415 | 0.035 6 |
CC | 6/0.085 | 2/0.067 | C | 44/0.310 | 10/0.167 | ||||
CT | 32/0.451 | 6/0.200 | |||||||
rsc.777G>A | GG | 33/0.465 | 22/0.733 | 6.705 | G | 98/0.690 | 50/0.833 | 4.415 | 0.035 6 |
AA | 6/0.085 | 2/0.067 | A | 44/0.310 | 10/0.167 | ||||
GA | 32/0.451 | 6/0.200 | |||||||
rsc.966C>T | TT | 5/0.070 | 2/0.067 | 5.237 | C | 99/0.697 | 49/0.817 | 3.074 | 0.079 5 |
CC | 33/0.465 | 21/0.700 | T | 43/0.303 | 11/0.183 | ||||
TC | 33/0.465 | 7/0.233 |
图3 4个热胁迫组的DEGs的GO和KEGG分析结果A、E、I、M分别为N_3h vs N_D、N_6h vs N_D、N_12h vs N_D、N_84h vs N_D组中上调差异表达基因GO分析图;B、F、J、N分别为N_3h vs N_D、N_6h vs N_D、N_12h vs N_D、N_84h vs N_D组中上调差异表达基因KEGG分析图;C、G、K、O分别为N_3h vs N_D、N_6h vs N_D、N_12h vs N_D、N_84h vs N_D组中下调差异表达基因GO分析图;D、H、L、P分别为N_3h vs N_D、N_6h vs N_D、N_12h vs N_D、N_84h vs N_D组中下调差异表达基因KEGG分析图
Fig. 3 GO and KEGG analysis of four heat stress groups
1 | 任慕莲.中国额尔齐斯河鱼类资源及渔业[M].乌鲁木齐:新疆科技卫生出版社,2002:80-87. |
2 | 韩小丽,杜劲松,刘立志,等.白斑狗鱼含肉率及其营养价值的分析[J].动物学杂志,2009,44(3):70-75. |
HAN X L, DU J S, LIU L Z, et al.. Analysis on the ratio of flesh content and nutritional quality of Esox lucius [J]. Chin. J. Zool., 2009, 44(3): 70-75. | |
3 | 海萨·艾也力汗,杜劲松,胡建勇,等.白斑狗鱼冬季生长性能评价及选育系现实遗传力的初步估计[J].淡水渔业,2015,45(3):105-108. |
HAISA A, DU J S, HU J Y, et al.. Study on winter growth performance and realized heritability in selection strain of Esox lucius [J]. Freshw. Fish., 2015, 45(3): 105-108. | |
4 | 黄宁宇,夏连军,么宗利,等.集约化养殖(盐碱水)中白斑狗鱼的生长及耗氧率研究[J].海洋水产研究,2006,27(1):64-70. |
HUANG N Y, XIA L J, YAO Z L, et al.. Study on growth and oxygen consumption of Esox lucius raised in greenhouse[J]. Prog. Fish. Sci., 2006, 27(1): 64-70. | |
5 | BARBAROSSA V, BOSMANS J, WANDERS N, et al.. Threats of global warming to the world's freshwater fishes[J/OL]. Nat. Commun., 2021, 12(1): 1701[2024-12-15]. . |
6 | International Union for Conservation of Nature. Freshwater fish highlight escalating climate impacts on species-IUCN Red List[EB/OL]. (2023-11-11)[2025-01-05]. |
7 | HEADRICK M R, CARLINE R F. Restricted summer habitat and growth of northern Pike in two southern Ohio impoundments[J]. Trans. Am. Fish. Soc., 2011, 122(2): 228-236. |
8 | FICKE A D, MYRICK C A, HANSEN L J. Potential impacts of global climate change on freshwater fisheries[J]. Rev. Fish Biol. Fish., 2007, 17(4): 581-613. |
9 | 朱士祥, 汤峰. 华东地区池塘养殖白斑狗鱼技术探讨[J]. 水利渔业, 2008, 28(3): 78-79. |
ZHU S X, TANG F. Discussion on the technology of pond culture of Esox lucius in East China[J]. J. Hydroecol., 2008, 28(3):78-79. | |
10 | 郑善坚,姜国平,施振宁.江浙地区白斑狗鱼养殖技术探讨[J].科学养鱼,2004(12):20-21. |
ZHENG S J, JIANG G P, SHI Z N. Discussion on breeding technology of Esox lucius in Jiangsu and Zhejiang[J]. Sci. Fish Farming, 2004(12): 20-21. | |
11 | 陈宏伟,张永明.天津地区白斑狗鱼池塘主养技术试验[J].齐鲁渔业,2010,27(9):10-11. |
CHEN H W, ZHANG Y M. Experiment on main culture technology of Pike in Tianjin area[J]. Shandong Fish., 2010, 27(9): 10-11. | |
12 | 海萨·艾也力汗,贺疆滔,张钰,等.白斑狗鱼早期发育阶段的耐热性及耐热性状关联SNP筛选[J].中国水产科学,2023,30(6):677-684. |
HAISA A, HE J T, ZHANG Y, et al.. Heat resistance and screening of heat resistance-associated SNPs in the early development stage of Esox lucius [J]. J. Fish. Sci. China, 2023, 30(6): 677-684. | |
13 | LIU X, HUANG M, FAN B, et al.. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies[J/OL]. PLoS Genet., 2016, 12(2): e1005767[2024-12-15]. . |
14 | 卢徐斌.江苏地区中国荷斯坦牛产奶性状的遗传参数估计、分子功能挖掘验证及基因组预测[D].扬州:扬州大学,2022. |
15 | 傅铄.凡纳滨对虾耐高氨氮性状全基因组关联分析与基因组选择研究[D].湛江:广东海洋大学,2022. |
16 | 叶靓,朱叶琳,裴琳婧,等.联合全基因组关联和转录组分析筛选玉米拟轮枝镰孢穗腐病的抗性候选基因[J].作物学报,2024,50(9):2279-2296. |
YE L, ZHU Y L, PEI L J, et al.. Screening candidate resistance genes to ear rot caused by Fusarium verticillioides in maize by combined GWAS and transcriptome analysis[J]. Acta Agron. Sin., 2024, 50(9): 2279-2296. | |
17 | 李光华,李红,张庆华,等.热应激对大鼠肝脏节律性基因Per2mRNA表达水平的影响[J].南方医科大学学报,2012,32(2):215-217. |
LI G H, LI H, ZHANG Q H, et al.. Effects of heat stress on Per2 mRNA expression in the liver of rats[J]. J. South. Med. Univ., 2012, 32(2): 215-217. | |
18 | 徐涛,朱玲勤,黄敏,等.热应激对大鼠中枢神经肽Y及阿黑皮素基因表达的影响[J].宁夏医科大学学报,2018,40(10):1166-1169. |
XU T, ZHU L Q, HUANG M, et al.. The influence of heat stress on the expression of NPY and POMC mRNA in rats[J]. J. Ningxia Med. Univ., 2018, 40(10): 1166-1169. | |
19 | 蒋雨露.极端温度和盐度胁迫对珍珠龙胆石斑鱼影响及分子机制研究[D].厦门:厦门大学,2020. |
20 | PARSELL D A, LINDQUIST S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged proteins[J]. Annu. Rev. Genet., 1993, 27: 437-496. |
21 | 张伟.草鱼耐热性状遗传参数估算及耐热基因筛选[D].上海:上海海洋大学,2023. |
22 | WANG F, DAI A Y, TAO K, et al.. Heat shock protein-70 neutralizes apoptosis inducing factor in Bcr/Abl expressing cells[J]. Cell. Signal., 2015, 27(10): 1949-1955. |
23 | 赵一诺,徐荣静,黄智慧,等.基于TMT技术对高温胁迫条件下大菱鲆幼鱼心脏的差异蛋白筛选分析[J].渔业科学进展,2024,45(5):30-41. |
ZHAO Y N, XU R J, HUANG Z H, et al.. TMT-based proteomic analysis of Scophthalmus maximus hearts under high temperature stress[J]. Prog. Fish. Sci., 2024, 45(5): 30-41. | |
24 | WANG B, MA G, LIU Y, et al.. Effects of different temperatures on the antibacterial, immune and growth performance of crucian carp epidermal mucus[J]. Fishes, 2021, 6(4):66-77. |
25 | BIZUAYEHU T T, BABIAK I. MicroRNA in teleost fish[J]. Genome Biol. Evol., 2014, 6(8):1911-1937. |
26 | RODRIGUES M V, ZANUZZO F S, KOCH J F A, et al.. Development of fish immunity and the role of β-glucan in immune responses[J/OL]. Molecules, 2020, 25(22): 5378[2024-12-15]. . |
27 | LI Y, HUANG J, LIU Z, et al.. Transcriptome analysis provides insights into hepatic responses to moderate heat stress in the rainbow trout (Oncorhynchus mykiss)[J]. Gene, 2017, 619: 1-9. |
28 | 刘恩光.急性热胁迫对白梭吻鲈肝脏和鳃组织损伤、细胞凋亡及免疫反应的影响[D].苏州:苏州大学,2021. |
29 | COVARRUBIAS A J, PERRONE R, GROZIO A, et al.. NAD(+) metabolism and its roles in cellular processes during ageing[J]. Nat. Rev. Mol. Cell Biol., 2021, 22(2): 119-141. |
30 | MINHAS P S, LIU L, MOON P K, et al.. Macrophage de novo NAD+ synthesis specifies immune function in aging and inflammation[J]. Nat. Immunol., 2019, 20(1): 50-63. |
31 | LU S, PENG X, ZENG S, et al.. Grass carp (Ctenopharyngodon idellus) PIAS1 inhibits innate immune response via interacting with STAT1[J/OL]. Dev. Comp. Immunol., 2021, 125: 104216[2024-12-15]. . |
32 | IWATA H, GOETTSCH C, SHARMA A, et al.. PARP9 and PARP14 cross-regulate macrophage activation via STAT1 ADP-ribosylation[J/OL]. Nat. Commun., 2016, 7: 12849[2024-12-15]. . |
33 | WANG N, YANG C G, SUN Z Z, et al.. Signal transducer and activator of transcription 3 (STAT3) homologue in turbot (Scophthalmus maximus): molecular characterization and expression analysis[J]. Fish Shellfish Immunol., 2011, 30(1): 255-262. |
34 | DU L, ZHOU H, QIN L, et al.. Identification and functional evaluation of two STAT3 variants in grass carp: implication for the existence of specific alternative splicing of STAT3 gene in teleost[J]. Dev. Comp. Immunol., 2017, 76: 326-333. |
35 | 王济秀.团头鲂IL-6介导的JAK/STAT3通路对非特异性免疫应答的调控机制研究[D].武汉:华中农业大学,2022. |
36 | TOTH K A, SCHMITT E G, KOLICHESKI A, et al.. A human STAT3 gain-of-function variant drives local Th17 dysregulation and skin inflammation in mice[J/OL]. J. Exp. Med., 2024, 221(8): e20232091[2024-12-15]. . |
37 | YOSHIDA A, FURUBE E, MANNARI T, et al.. TRPV1 is crucial for proinflammatory STAT3 signaling and thermoregulation-associated pathways in the brain during inflammation[J/OL]. Sci. Rep., 2016, 6: 26088[2024-12-15]. . |
38 | SHAH M, PATEL K, FRIED V A, et al.. Interactions of STAT3 with caveolin-1 and heat shock protein 90 in plasma membrane raft and cytosolic complexes. Preservation of cytokine signaling during fever[J]. J. Biol. Chem., 2002, 277(47): 45662-45669. |
39 | 赵文秀, 杜瑞, 杜雪蓉, 等. STAT3对细胞的稳态调节及调控肉色影响机制的研究进展[J/OL]. 食品科学,2023, doi:10.7506/spkx1002-6630-20231207-063[2024-12-15]. . |
ZHAO W X, DU R, DU X R, et al.. Research progress on the regulation of cell homeostasis and the mechanism of meat color regulation by STAT3[J]. Food Sci., 2023, doi:10.7506/spkx1002-6630-20231207-063[2024-12-15]. . | |
40 | MEHROTRA P, KRISHNAMURTHY P, SUN J, et al.. Poly-ADP-ribosyl polymerase-14 promotes T helper 17 and follicular T helper development[J]. Immunology, 2015, 146(4): 537-546. |
41 | LIAO P Y, LEE K H. From SNPs to functional polymorphism: the insight into biotechnology applications[J]. Biochem. Eng. J., 2010, 49(2): 149-158. |
42 | 朱爱文, 马友记, 陈国宏, 等. 甘肃肉羊新品种选育群 GDF9 基因外显子2多态性及其与产羔性状关联分析[J]. 生物技术通报, 2011, 10: 179-184. |
ZHU A W, MA Y J, CHEN G H, et al.. Polymorphism of GDF9 gene exon 2 and its relationship with litter size trait of Gansu meat sheep new breed population[J]. Biotechnol. Bull., 2011, 10:179-184. | |
43 | 陈晓敏,刘建勇,张嘉晨,等.凡纳滨对虾过氧化氢酶基因单核苷酸多态性及其与耐低溶氧性状的相关性[J].广东海洋大学学报,2016,36(6):16-20. |
CHEN X M, LIU J Y, ZHANG J C, et al.. Single nucleotide polymorphisms in catalase gene and their association with resistant hypoxia traits in litopenaeus vannamei[J]. J. Guangdong Ocean. Univ., 2016, 36(6): 16-20. | |
44 | 尹诗欣,李志屿,杨晶淼,等.马氏珠母贝TTLL基因的序列特征、SNP筛选及其与生长性状的关联分析[J].大连海洋大学学报,2022,37(6):949-959. |
YIN S X, LI Z Y, YANG J M, et al.. Sequence characteristics, SNP screening and association with growth traits of TTLL gene in pearl oyster Pinctada fucata martensii [J]. J. Dalian Ocean. Univ., 2022, 37(6): 949-959. | |
45 | 陈钰,李琪,于红,等.长牡蛎转化生长因子受体基因多态性与生长性状和糖原含量的相关性分析[J].中国海洋大学学报(自然科学版),2017,47(3):27-33. |
CHEN Y, LI Q, YU H, et al.. Polymorphism of transforming growth factor β receptor I gene and its association with growth traits and glycogen content in Pacific oyster Crassostrea gigas[J]. Period. Ocean. Univ. China, 2017, 47(3): 27-33. |
[1] | 刘卓颖, 周晓今, 黄燕丽, 逄森. 玉米盐胁迫和MeJA处理下的转录组联合分析[J]. 生物技术进展, 2025, 15(2): 263-275. |
[2] | 贾定洪, 刘询, 王波, 王晓巍, 李通, 黄礼璟. 黑木耳丰度SNP标记开发及应用[J]. 生物技术进展, 2024, 14(6): 892-901. |
[3] | 万令飞, 潘文婷, 雍雨婷, 李元帅, 赵悦, 阎新龙. 单细胞转录组测序技术在肝纤维化中的研究进展[J]. 生物技术进展, 2024, 14(5): 793-804. |
[4] | 马叶子, 夏美娟, 刘翠翠, 王洪涛, 周家喜. 新型冠状病毒奥密克戎感染下血小板转录组与蛋白质组的对比分析[J]. 生物技术进展, 2024, 14(4): 649-656. |
[5] | 张慧, 刘愽愽, 李凤梅, 崔健. 生长素信号途径参与南瓜白粉菌胁迫的响应研究[J]. 生物技术进展, 2024, 14(3): 433-441. |
[6] | 乔红梅. 红树科陆生植物竹节树的转录组分析[J]. 生物技术进展, 2024, 14(2): 228-236. |
[7] | 王彩虹, 邵煜涵, 蒋梦媛. IL-17抑制铜绿假单胞菌感染肺上皮细胞的机制研究[J]. 生物技术进展, 2024, 14(2): 304-311. |
[8] | 刘勤勤, 黄柏铭, 马叶子, 刘翠翠, 王洪涛, 周家喜. 急性感染条件下巨核细胞与血小板转录组变化的对比分析[J]. 生物技术进展, 2023, 13(3): 465-472. |
[9] | 李敏敏, 夏美娟, 赵晶晶, 陈肖源, 刘翠翠, 苏培, 王洪涛, 周家喜. 人类胚胎期和成年期巨核细胞的分子特征比较[J]. 生物技术进展, 2022, 12(4): 577-583. |
[10] | 李东翱, 刘慧泉, 王秦虎. 小麦响应禾谷镰刀菌侵染的转录组学研究进展[J]. 生物技术进展, 2021, 11(5): 610-617. |
[11] | 柯杨, 马瑜, 朱海云, 张育辉. RNA‑seq技术在水生生物生态毒理学中的应用进展[J]. 生物技术进展, 2021, 11(4): 535-541. |
[12] | 方汉顺,,谢永盾,曾伟伟,郭会君,熊宏春,赵林姝,古佳玉,徐延浩,刘录祥. 小麦矮秆突变体jm22d响应赤霉素处理的转录组学分析[J]. 生物技术进展, 2020, 10(5): 503-516. |
[13] | 常文婧,赵彦艳. 激光捕获显微切割在肿瘤多组学研究中的应用进展[J]. 生物技术进展, 2020, 10(2): 130-136. |
[14] | 张在宝,,赵海,胡梦辉,邓丽君,王琦,李九丽,袁红雨,. 组学在花药发育研究中的应用进展Ⅰ:转录组学[J]. 生物技术进展, 2019, 9(5): 433-439. |
[15] | 付玉和,孙文丽,黄震巨,程奇,. Klenow(exo-)蛋白的制备及其在RAA检测体系中的应用研究[J]. 生物技术进展, 2019, 9(4): 409-415. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部