生物技术进展 ›› 2025, Vol. 15 ›› Issue (3): 365-371.DOI: 10.19586/j.2095-2341.2024.0193
• 进展评述 • 下一篇
收稿日期:
2024-12-06
接受日期:
2025-02-12
出版日期:
2025-05-25
发布日期:
2025-07-01
通讯作者:
葛长荣
作者简介:
李浩杰 E-mail: 1322806263@qq.com;
基金资助:
Haojie LI(), Xinlu LI, Kun WANG, Changrong GE(
)
Received:
2024-12-06
Accepted:
2025-02-12
Online:
2025-05-25
Published:
2025-07-01
Contact:
Changrong GE
摘要:
肉类作为人类饮食中的重要组成部分,其重要性随着社会经济的发展和人们生活水平的提高而日益凸显。目前,消费者对肉类产品的需求不再仅限于基本的营养和卫生要求,而是更加注重产品的健康性、口感和风味,组学技术为肉品质评价(肉色、pH、系水力、嫩度、游离氨基酸、肌内脂肪等)提供了科学手段。介绍了组学技术的概念及其研究策略,总结了组学技术在肉品质评价中的应用进展,以期为进一步利用组学技术提高肉的质量提供参考。
中图分类号:
李浩杰, 李鑫璐, 王坤, 葛长荣. 组学技术在肉品质评价中的研究与应用进展[J]. 生物技术进展, 2025, 15(3): 365-371.
Haojie LI, Xinlu LI, Kun WANG, Changrong GE. Research and Application Progress of Omics Technology in Meat Quality Evaluation[J]. Current Biotechnology, 2025, 15(3): 365-371.
表1 组学技术及其研究方法
Table 1 Omics technology and their research methods
1 | 张丽,许欣纯,罗威,等.鸡肉品质评价及影响因素研究进展[J].广东畜牧兽医科技,2022,47(6):26-33. |
ZHANG L, XU X C, LUO W, et al.. Research progress on evaluation and influence factors of chicken meat quality[J]. Guangdong J. Anim. Vet. Sci., 2022, 47(6): 26-33. | |
2 | 巨晓军,刘一帆,章明,等.鸡肉品质性状评价指标与方法研究进展[J].中国家禽,2019,41(2):44-48. |
JU X J, LIU Y F, ZHANG M, et al.. Research progress on evaluation indices and methods of chicken meat quality[J]. China Poult., 2019, 41(2): 44-48. | |
3 | 杨晓东,魏萌,于豪杰,等.不同钙盐对牛肉品质影响初探[J].中国食品添加剂,2022,33(11):106-112. |
YANG X D, WEI M, YU H J, et al.. Effect of different calcium salt on beef quality[J]. China Food Addit., 2022, 33(11): 106-112. | |
4 | 刘永,丁贤群,佟荟全,等.云南无量山乌骨鸡肉品质物理指标比较分析[J].黑龙江畜牧兽医,2017(4):179-181+183. |
LIU Y, DING X Q, TONG H Q, et al.. Comparative analysis of physical indicators of meat quality in Wuliangshan black-bone chickens from Yunnan[J]. Heilongjiang Anim. Sci. Vet. Med., 2017(4): 179-181+183. | |
5 | 李同树,刘风民,尹逊河,等.鸡肉嫩度评定方法及其指标间的相关分析[J].畜牧兽医学报,2004,35(2):171-177. |
LI T S, LIU F M, YIN X H, et al.. The evaluation methods of chicken meat tenderness and their relationship[J]. Chin. J. Anim. Vet. Sci., 2004, 35(2): 171-177. | |
6 | SOUZA A C A H, TROSCHEL A S, MARQUARDT J P, et al.. Skeletal muscle adiposity, coronary microvascular dysfunction, and adverse cardiovascular outcomes[J]. Eur. Heart J., 2025, 46(12): 1112-1123. |
7 | KALAKUNTLA S, NAGIREDDY N K, PANDA A K, et al.. Effect of dietary incorporation of n-3 polyunsaturated fatty acids rich oil sources on fatty acid profile, keeping quality and sensory attributes of broiler chicken meat[J]. Anim. Nutr., 2017, 3(4): 386-391. |
8 | WANG C, HAN B. Twenty years of rice genomics research: From sequencing and functional genomics to quantitative genomics[J]. Mol. Plant, 2022, 15(4): 593-619. |
9 | ALDRIDGE S, TEICHMANN S A. Single cell transcriptomics comes of age[J/OL]. Nat. Commun., 2020, 11(1): 4307[2025-02-27]. . |
10 | ANDERSON A C, YANAI I, YATES L R, et al.. Spatial transcriptomics[J]. Cancer Cell, 2022, 40(9): 895-900. |
11 | GONZÁLEZ-GOMARIZ J, GURUCEAGA E, LÓPEZ-SÁNCHEZ M, et al.. Proteogenomics in the context of the human proteome project (HPP)[J]. Expert Rev. Proteomics, 2019, 16(3): 267-275. |
12 | LIU X, LOCASALE J W. Metabolomics: a primer[J]. Trends Biochem. Sci., 2017, 42(4): 274-284. |
13 | ZHANG Y, SHI J, TAN C, et al.. Oilomics: an important branch of foodomics dealing with oil science and technology[J/OL]. Food Res. Int., 2023, 173(Pt 1): 113301[2025-02-27]. . |
14 | MUNEKATA P E, PATEIRO M, LÓPEZ-PEDROUSO M, et al.. Foodomics in meat quality[J]. Curr. Opin. Food Sci., 2021, 38: 79-85. |
15 | MAHATO D K, KAMLE M, PANDHI S, et al.. Foodomics: a sustainable approach for the specific nutrition and diets for human health[J/OL]. Food Chem., 2024, 24: 101872[2025-02-27]. . |
16 | CHEN R, LEI S, JIANG T, et al.. Roles of lncRNAs and circRNAs in regulating skeletal muscle development[J/OL]. Acta Physiol., 2020, 228(2): e13356[2025-02-27]. . |
17 | JUNG H J, LEE K P, SKWON K, et al.. microRNAs in skeletal muscle aging: current issues and perspectives[J]. J. Gerontol. A Biol. Sci. Med. Sci., 2019, 74(7): 1008-1014. |
18 | WANG S, JIN J, XU Z, et al.. Functions and regulatory mechanisms of lncRNAs in skeletal myogenesis, muscle disease and meat production[J/OL]. Cells, 2019, 8(9): 1107[2025-02-27]. . |
19 | FERNÁNDEZ-BARROSO M Á, CARABALLO C, SILIÓ L, et al.. Differences in the loin tenderness of Iberian pigs explained through dissimilarities in their transcriptome expression profile[J/OL]. Animals, 2020, 10(9): 0[2025-02-27]. . |
20 | MUNIZ M M M, FONSECA L F S, DOS SANTOS SILVA D B, et al.. Identification of novel mRNA isoforms associated with meat tenderness using RNA sequencing data in beef cattle[J/OL]. Meat Sci., 2021, 173: 108378[2025-02-27]. . |
21 | DAMON M, WYSZYNSKA-KOKO J, VINCENT A, et al.. Comparison of muscle transcriptome between pigs with divergent meat quality phenotypes identifies genes related to muscle metabolism and structure[J/OL]. PLoS ONE, 2012, 7(3): e33763[2025-02-27]. . |
22 | MIAO X, LUO Q, QIN X, et al.. Genome-wide mRNA-seq profiling reveals predominant down-regulation of lipid metabolic processes in adipose tissues of Small Tail Han than Dorset sheep[J]. Biochem. Biophys. Res. Commun., 2015, 467(2): 413-420. |
23 | JI C, LIU J, LUO R. Regulatory role of mitochondrial genes in the tenderisation of lamb meat during postmortem ageing[J]. Int. J. Food Sci. Technol., 2022, 57(6): 3544-3555. |
24 | JORRÍN-NOVO J V, PASCUAL J, SÁNCHEZ-LUCAS R, et al.. Fourteen years of plant proteomics reflected in proteomics: moving from model species and 2DE-based approaches to orphan species and gel-free platforms[J]. Proteomics, 2015, 15(5-6): 1089-1112. |
25 | HONG KWAN S, BAIE S, NAZRI ISMAIL M. Profiling of proteins and post translational modifications of Channa striatus dried meat[J]. Curr. Proteom., 2016, 13(1): 9-19. |
26 | KWON E J, LEE H R, LEE J H, et al.. Identification of differentially expressed genes and pathways for risk stratification in HPV-associated cancers governing different anatomical sites[J/OL]. Front. Biosci., 2022, 27(1): 2[2025-02-27]. . |
27 | GE K, YE P, YANG L, et al.. Comparison of slaughter performance, meat traits, serum lipid parameters and fat tissue between Chaohu ducks with high- and low-intramuscular fat content[J]. Anim. Biotechnol., 2020, 31(3): 245-255. |
28 | DALLE ZOTTE A, GLEESON E, FRANCO D, et al.. Proximate composition, amino acid profile, and oxidative stability of slow-growing indigenous chickens compared with commercial broiler chickens[J/OL]. Foods, 2020, 9(5): 546[2025-02-27]. . |
29 | GE Y, GAI K, LI Z, et al.. HPLC-QTRAP-MS-based metabolomics approach investigates the formation mechanisms of meat quality and flavor of Beijing-you chicken[J/OL]. Food Chem., 2023, 17: 100550[2025-02-27]. . |
30 | LIU J, FU R, LIU R, et al.. Protein profiles for muscle development and intramuscular fat accumulation at different post-hatching ages in chickens[J/OL]. PLoS ONE, 2016, 11(8): e0159722[2025-02-27]. . |
31 | ZHANG J, CAO J, GENG A, et al.. Comprehensive proteomic characterization of the pectoralis major at three chronological ages in Beijing-you chicken[J/OL]. Front. Physiol., 2021, 12: 658711[2025-02-27]. . |
32 | 胡争艳,王军淋,吴平谷,等.蛋白质组学技术在肉类鉴别及肉质分析中的应用进展[J].生物技术进展,2018,8(3):206-213. |
HU Z Y, WANG J L, WU P G, et al.. Progress on application of proteomic technology in meat authentication and meat quality analysis[J]. Curr. Biotechnol., 2018, 8(3): 206-213. | |
33 | FACCHIANO A, HEIDER D, MUTARELLI M. Editorial: artificial intelligence and bioinformatics applications for omics and multi-omics studies[J/OL]. Front. Genet., 2024, 15: 1371473[2025-02-27]. . |
34 | WANG B, WANG Y, ZUO S, et al.. Untargeted and targeted metabolomics profiling of muscle reveals enhanced meat quality in artificial pasture grazing Tan lambs via rescheduling the rumen bacterial community[J]. J. Agric. Food Chem., 2021, 69(2): 846-858. |
35 | WANG J, XU Z, ZHANG H, et al.. Meat differentiation between pasture-fed and concentrate-fed sheep/goats by liquid chromatography quadrupole time-of-flight mass spectrometry combined with metabolomic and lipidomic profiling[J/OL]. Meat Sci., 2021, 173: 108374[2025-02-27]. . |
36 | KIM D Y, KIM J M. Multi-omics integration strategies for animal epigenetic studies-a review[J]. Anim. Biosci., 2021, 34(8): 1271-1282. |
37 | JUNG G T, KIM K P, KIM K. How to interpret and integrate multi-omics data at systems level[J]. Anim. Cells Syst., 2020, 24(1): 1-7. |
38 | FONDI M, LIÒ P. Multi-omics and metabolic modelling pipelines: challenges and tools for systems microbiology[J]. Microbiol. Res., 2015, 171: 52-64. |
39 | KATO H, TAKAHASHI S, SAITO K. Omics and integrated omics for the promotion of food and nutrition science[J]. J. Tradit. Complement. Med., 2011, 1(1): 25-30. |
40 | PATHAK R R, DAVÉ V. Integrating omics technologies to study pulmonary physiology and pathology at the systems level[J]. Cell. Physiol. Biochem., 2014, 33(5): 1239-1260. |
41 | PAN P, QIN Z, XIE W, et al.. Identification of differentially expressed genes in the longissimus dorsi muscle of Luchuan and duroc pigs by transcriptome sequencing[J/OL]. Genes, 2023, 14(1): 132[2025-02-27]. . |
42 | MA D, YU Q, HEDRICK V E, et al.. Proteomic and metabolomic profiling reveals the involvement of apoptosis in meat quality characteristics of ovine M. longissimus from different callipyge genotypes[J/OL]. Meat Sci., 2020, 166: 108140[2025-02-27]. . |
43 | WINDARSIH A, SURATNO, WARMIKO H D, et al.. Untargeted metabolomics and proteomics approach using liquid chromatography-orbitrap high resolution mass spectrometry to detect pork adulteration in Pangasius hypopthalmus meat[J/OL]. Food Chem., 2022, 386: 132856[2025-02-27]. . |
44 | ZHANG X Y, YUAN Z H, LI F D, et al.. Integrating transcriptome and metabolome to identify key genes regulating important muscular flavour precursors in sheep[J/OL]. Animal, 2022, 16(12): 100679[2025-02-27]. . |
45 | ZHAO Y, ZHANG Y, KHAS E, et al.. Transcriptome analysis reveals candidate genes of the synthesis of branched-chain fatty acids related to mutton flavor in the lamb liver using Allium mongolicum regel extract[J/OL]. J. Anim. Sci., 2022, 100(9): skac256[2025-02-27]. . |
46 | CHEN B, YUE Y, LI J, et al.. Transcriptome-metabolome analysis reveals how sires affect meat quality in hybrid sheep populations[J/OL]. Front. Nutr., 2022, 9: 967985[2025-02-27]. . |
47 | CUI X, YANG Y, ZHANG M, et al.. Transcriptomics and metabolomics analysis reveal the anti-oxidation and immune boosting effects of mulberry leaves in growing mutton sheep[J/OL]. Front. Immunol., 2022, 13: 1088850[2025-02-27]. . |
48 | ZHANG Y, GUO Y, LUO Y, et al.. Integrated metabolomics and transcriptome revealed the effect of fermented Lycium barbarum residue promoting Ovis aries immunity[J/OL]. Front. Immunol., 2022, 13: 889436[2025-02-27]. . |
49 | WU J, YANG D, GONG H, et al.. Multiple omics analysis reveals that high fiber diets promote gluconeogenesis and inhibit glycolysis in muscle[J/OL]. BMC Genomics, 2020, 21(1): 660[2025-02-27]. . |
50 | BUCCITELLI C, SELBACH M. mRNAs, proteins and the emerging principles of gene expression control[J]. Nat. Rev. Genet., 2020, 21(10): 630-644. |
51 | FORTELNY N, OVERALL C M, PAVLIDIS P, et al.. Can we predict protein from mRNA levels?[J/OL]. Nature, 2017, 547(7664): 19-20. |
52 | SALOVSKA B, ZHU H, GANDHI T, et al.. Isoform-resolved correlation analysis between mRNA abundance regulation and protein level degradation[J/OL]. Mol. Syst. Biol., 2020, 16(3): e9170[2025-02-27]. . |
53 | WU X, ZHOU X, CHU M, et al.. Whole transcriptome analyses and comparison reveal the metabolic differences between oxidative and glycolytic skeletal muscles of yak[J/OL]. Meat Sci., 2022, 194: 108948[2025-02-27]. . |
54 | TAO Y F, QIANG J, HE J, et al.. Untargeted LC-MS metabolomics approach reveals metabolic changes in genetically improved farmed Tilapia (Oreochromis niloticus) with fatty liver induced by a high-fat diet[J]. Aquac. Res., 2021, 52(2): 724-735. |
55 | LIU H, WEI B, TANG Q, et al.. Non-target metabolomics reveals the changes of small molecular substances in duck breast meat under different preservation time[J/OL]. Food Res. Int., 2022, 161: 111859[2025-02-27]. . |
[1] | 崔兆惠, 郭玲, 沈旭东, 林毅, 翟丽丽. 生物技术药物的免疫原性产生机制与控制策略[J]. 生物技术进展, 2025, 15(2): 212-219. |
[2] | 侯晓妮, 刘明东, 吕昊, 叶德萍, 马丽侠, 周李华. 生物酶活性测试技术研究进展[J]. 生物技术进展, 2025, 15(1): 58-66. |
[3] | 刘馨泽, 冯琳, 孙恺婧, 孙莹, 杨雪, 李光哲, 吴巍, 陈长宝, 李玉, 金鑫, 万茜淋. 维药苦白蹄的本草考证及现代药理学分析[J]. 生物技术进展, 2024, 14(6): 920-928. |
[4] | 梁丽存, 刘文龙, 刘晓青, 姚斌, 黄火清, 杨浩萌. 化学试剂对塔宾曲霉同源重组效率的影响[J]. 生物技术进展, 2024, 14(4): 586-593. |
[5] | 齐航宇, 都婷婷, 高权新, 唐琼英, 杨国梁, 易少奎. 虾蟹类动物社会等级研究进展[J]. 生物技术进展, 2023, 13(6): 827-836. |
[6] | 杨玉琦, 何秀霞. 滚环扩增技术在电化学生物传感器中的应用[J]. 生物技术进展, 2023, 13(6): 863-867. |
[7] | 赵俊魁, 卢永忠. 蓝藻细胞工厂的研究进展[J]. 生物技术进展, 2023, 13(2): 174-180. |
[8] | 孙瑞雪, 米薇, 叶子弘. 基于质谱技术的蛋白质互作研究进展[J]. 生物技术进展, 2022, 12(2): 161-167. |
[9] | 高欣欣, 马梦男, 刘春龙, 王梦凡. 基于裸磁珠体系检测血清淀粉样蛋白A浓度方法的建立与效果评估[J]. 生物技术进展, 2022, 12(2): 281-287. |
[10] | 张玉昆,,安娜,刘卫晓,宛煜嵩,金芜军,李亮,张晓. 基于表面等离子体共振和电化学联用的DNA传感器研究进展[J]. 生物技术进展, 2019, 9(6): 592-598. |
[11] | 林晟豪,杜再慧,张秀杰,黄昆仑,,刘清亮4,许文涛,. 基于环介导等温扩增技术的生物传感器研究进展[J]. 生物技术进展, 2019, 9(6): 599-610. |
[12] | 王锐,余涛,曾庆良,杨忠芳. 我国主要农耕区土壤硒含量分布特征、来源及影响因素[J]. 生物技术进展, 2017, 7(5): 359-366. |
[13] | 秦海波,朱建明. 中国典型高硒区硒的环境地球化学研究进展[J]. 生物技术进展, 2017, 7(5): 367-373. |
[14] | 何邵麟,陈武,莫春虎,刘应忠,孟伟,李朝晋,潘自平,王芳,. 贵州乌蒙山区土壤-农作物体系硒-锌分布特征研究[J]. 生物技术进展, 2017, 7(5): 557-562. |
[15] | 路艳,陈莹,陆庆明,张颖,李朝晖,谢晓华 . 大鼠创伤失血性休克心肌巨噬细胞极化标志蛋白变化规律研究[J]. 生物技术进展, 2017, 7(3): 225-229. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部