生物技术进展 ›› 2024, Vol. 14 ›› Issue (5): 776-784.DOI: 10.19586/j.2095-2341.2024.0069
• 进展评述 • 上一篇
赵尉吏(), 吕娜, 李会强, 何亚辉, 李露露, 梁明丽, 李岩异(
)
收稿日期:
2024-04-01
接受日期:
2024-06-03
出版日期:
2024-09-25
发布日期:
2024-10-22
通讯作者:
李岩异
作者简介:
赵尉吏 E-mail:18003218172@163.com;
Weili ZHAO(), Na LYU, Huiqiang LI, Yahui HE, Lulu LI, Mingli LIANG, Yanyi LI(
)
Received:
2024-04-01
Accepted:
2024-06-03
Online:
2024-09-25
Published:
2024-10-22
Contact:
Yanyi LI
摘要:
病毒样颗粒(virus-like particles,VLPs) 是含有某种病毒一个或多个结构蛋白的空心颗粒形态, 结构上类似完整病毒,具有与完整病毒相似的免疫原性并通过激活抗原提呈细胞诱导免疫应答,由于不含有完整的病毒基因组,因此适合用于开发更安全、成本更低的候选疫苗。系统阐述了VLPs的分类、表征、优势及表达系统,回顾了VLPs疫苗的发展历程,并汇总了已上市的疫苗品种。同时,介绍了部分在研的预防性或治疗性VLPs疫苗,并探讨了新的开发策略,进一步拓宽了VLPs疫苗的研发领域,为未来的研究与应用提供了更广阔的前景。
中图分类号:
赵尉吏, 吕娜, 李会强, 何亚辉, 李露露, 梁明丽, 李岩异. 病毒样颗粒疫苗研究进展[J]. 生物技术进展, 2024, 14(5): 776-784.
Weili ZHAO, Na LYU, Huiqiang LI, Yahui HE, Lulu LI, Mingli LIANG, Yanyi LI. Research Progress of Virus-like Particles Vaccine[J]. Current Biotechnology, 2024, 14(5): 776-784.
药品名称 | 上市时间 | 抗原表位 | 表达系统 | 佐剂 | 生产商 |
---|---|---|---|---|---|
Engerix-B® | 1989 | S抗原 | 酿酒酵母 | 氢氧化铝 | 英国葛兰素史克公司 |
Fendrix® | 2005 | S抗原 | 酿酒酵母 | AS04 | 英国葛兰素史克公司 |
Heplisav-B® | 2017 | S抗原 | 汉逊酵母 | CpG1018 | 美国德纳维制药公司 |
Recombivax HB® | 2018 | S抗原 | 酿酒酵母 | 硫酸铝 | 美国默沙东公司 |
PreHevbrio®(Sci-B-Vac) | 2021 | S抗原、pre-S1抗原和pre-S2抗原 | 哺乳动物(CHO细胞) | 氢氧化铝 | 美国VBI疫苗公司 |
表1 已上市的HBV VLPs疫苗
Table 1 HBV based on VLPs on the market
药品名称 | 上市时间 | 抗原表位 | 表达系统 | 佐剂 | 生产商 |
---|---|---|---|---|---|
Engerix-B® | 1989 | S抗原 | 酿酒酵母 | 氢氧化铝 | 英国葛兰素史克公司 |
Fendrix® | 2005 | S抗原 | 酿酒酵母 | AS04 | 英国葛兰素史克公司 |
Heplisav-B® | 2017 | S抗原 | 汉逊酵母 | CpG1018 | 美国德纳维制药公司 |
Recombivax HB® | 2018 | S抗原 | 酿酒酵母 | 硫酸铝 | 美国默沙东公司 |
PreHevbrio®(Sci-B-Vac) | 2021 | S抗原、pre-S1抗原和pre-S2抗原 | 哺乳动物(CHO细胞) | 氢氧化铝 | 美国VBI疫苗公司 |
药品名称 | 上市时间 | 抗原表位 | 表达系统 | 佐剂 | 生产商 |
---|---|---|---|---|---|
Cervarix® | 2006 | L1 HPV 16 L1 HPV 18 | 昆虫-杆状病毒 | 氢氧化铝ASO4 | 英国葛兰素史克公司 |
Gardasil® | 2009 | L1 HPV 6 L1 HPV 11 L1 HPV 16 L1 HPV 18 | 酿酒酵母 | 羟基磷酸硫酸铝 | 美国默沙东公司 |
Gardasil9® | 2014 | L1 HPV 6 L1 HPV 11 L1 HPV 16 L1 HPV 18 L1 HPV 31 L1 HPV 33 L1 HPV 45 L1 HPV 52 L1 HPV 58 | 酿酒酵母 | 羟基磷酸硫酸铝 | 美国默沙东公司 |
馨可宁® | 2019 | L1 HPV 16 L1 HPV 18 | 大肠杆菌 | 氢氧化铝 | 厦门万泰 |
沃泽惠® | 2022 | L1 HPV 16 L1 HPV 18 | 毕赤酵母 | 磷酸铝 | 沃森生物 |
表2 已上市的HPV VLPs疫苗
Table 2 HPV prophylactic vaccines based on VLPs on the market
药品名称 | 上市时间 | 抗原表位 | 表达系统 | 佐剂 | 生产商 |
---|---|---|---|---|---|
Cervarix® | 2006 | L1 HPV 16 L1 HPV 18 | 昆虫-杆状病毒 | 氢氧化铝ASO4 | 英国葛兰素史克公司 |
Gardasil® | 2009 | L1 HPV 6 L1 HPV 11 L1 HPV 16 L1 HPV 18 | 酿酒酵母 | 羟基磷酸硫酸铝 | 美国默沙东公司 |
Gardasil9® | 2014 | L1 HPV 6 L1 HPV 11 L1 HPV 16 L1 HPV 18 L1 HPV 31 L1 HPV 33 L1 HPV 45 L1 HPV 52 L1 HPV 58 | 酿酒酵母 | 羟基磷酸硫酸铝 | 美国默沙东公司 |
馨可宁® | 2019 | L1 HPV 16 L1 HPV 18 | 大肠杆菌 | 氢氧化铝 | 厦门万泰 |
沃泽惠® | 2022 | L1 HPV 16 L1 HPV 18 | 毕赤酵母 | 磷酸铝 | 沃森生物 |
1 | KUSHNIR N, STREATFIELD S J, YUSIBOV V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development[J]. Vaccine, 2012, 31(1): 58-83. |
2 | KLEID D G, YANSURA D, SMALL B, et al.. Cloned viral protein vaccine for foot-and-mouth disease: responses in cattle and swine[J]. Science, 1981, 214(4525): 1125-1129. |
3 | LMICHEL M, TIOLLAIS P. Hepatitis B vaccines: protective efficacy and therapeutic potential[J]. Pathol. Biol. (Paris), 2010, 58(4): 288-295. |
4 | LINDA H, LUA L, FRANK S, et al.. Bioengineering virus-like particles as vaccines[J].Biotechnol. Bioengin., 2014, doi:10.1002/bit.25159[2024-08-02]. . |
5 | WHITACRE D C, LEE B O, MILICH D R. Use of hepadnavirus core proteins as vaccine platforms[J]. Expert Rev. Vaccines, 2009, 8(11): 1565-1573. |
6 | SAUNDERS K, SAINSBURY F, LOMONOSSOFF G P. Efficient generation of cowpea mosaic virus empty virus-like particles by the proteolytic processing of precursors in insect cells and plants[J]. Virology, 2009, 393(2): 329-337. |
7 | KIRNBAUER R, TAUB J, GREENSTONE H, et al.. Efficient self-assembly of human papillomavirus type 16 L1 and L1-L2 into virus-like particles[J]. Int. J. Mol. Sci., 1993, 67(12): 6929-6936. |
8 | PORTA C, KOTECHA A, BURMAN A, et al.. Rational engineering of recombinant picornavirus capsids to produce safe, protective vaccine antigen[J/OL]. PLoS Pathog., 2013, 9(3): e1003255[2024-08-02]. . |
9 | HEWAT E A, BOOTH T F, ROY P. Structure of correctly self-assembled bluetongue virus-like particles[J]. J. Struct. Biol., 1994, 112(3): 183-191. |
10 | CONNER M E, ZARLEY C D, HU B, et al.. Virus-like particles as a rotavirus subunit vaccine[J]. J. Interv. Cardiol., 1996, 174(): S88-S92. |
11 | KANG S M, KIM M C, COMPANS R W. Virus-like particles as universal influenza vaccines[J]. Expert Rev. Vaccines, 2012, 11(8): 995-1007. |
12 | FREIVALDS J, DISLERS A, OSE V, et al.. Highly efficient production of phosphorylated hepatitis B core particles in yeast Pichia pastoris [J]. Protein Expr. Purif., 2011, 75(2): 218-224. |
13 | KALNCIEMA I, SKRASTINA D, OSE V, et al.. Potato virus Y-like particles as a new carrier for the presentation of foreign protein stretches[J]. Mol. Biotechnol., 2012, 52(2): 129-139. |
14 | IBAÑEZ L I, ROOSE K, DE FILETTE M, et al.. M2e-displaying virus-like particles with associated RNA promote T helper 1 type adaptive immunity against influenza A[J/OL]. PLoS One, 2013, 8(3): e59081[2024-08-02]. . |
15 | SAINSBURY F, SAUNDERS K, ALJABALI A A A, et al.. Peptide-controlled access to the interior surface of empty virus nanoparticles[J]. ChemBioChem, 2011, 12(16): 2435-2440. |
16 | KUZNETSOV Y G, MCPHERSON A. Atomic force microscopy in imaging of viruses and virus-infected cells[J]. Microbiol. Mol. Biol. Rev., 2011, 75(2): 268-285. |
17 | ZHAO Q, ALLEN M J, WANG Y, et al.. Disassembly and reassembly improves morphology and thermal stability of human papillomavirus type 16 virus-like particles[J]. Nanomedicine, 2012, 8(7): 1182-1189. |
18 | EMILHIET P, DOSSET P, GODEFROY C, et al.. Nanoscale topography of hepatitis B antigen particles by atomic force microscopy[J]. Biochimie, 2011, 93(2): 254-259. |
19 | PEASE L F, LIPIN D I, TSAI D H, et al.. Quantitative characterization of virus-like particles by asymmetrical flow field flow fractionation, electrospray differential mobility analysis, and transmission electron microscopy[J]. Biotechnol. Bioeng., 2009, 102(3): 845-855. |
20 | DESCHUYTENEER M, ELOUAHABI A, PLAINCHAMP D, et al.. Molecular and structural characterization of the L1 virus-like particles that are used as vaccine antigens in Cervarix™, the AS04-adjuvanted HPV-16 and-18 cervical cancer vaccine[J]. Hum. Vaccin., 2010, 6(5): 407-419. |
21 | SHAH K, CHAUBEY P, MISRA N. Bioinformatics approach for screening and modeling of putative T cell epitopes from Por B protein of Neisseria meningitides as vaccine constructs[J]. Indian J. Biotechnol., 2010, 9(4):351-359. |
22 | MOHSEN M O, GOMES A C, CABRAL-MIRANDA G, et al.. Delivering adjuvants and antigens in separate nanoparticles eliminates the need of physical linkage for effective vaccination[J]. J. Control. Release, 2017, 251: 92-100. |
23 | NOAD R, ROY P. Virus-like particles as immunogens[J]. Trends Microbiol., 2003, 11(9): 438-444. |
24 | BACHMANN M F, JENNINGS G T. Vaccine delivery: a matter of size, geometry, kinetics and molecular patterns[J]. Nat. Rev. Immunol., 2010, 10(11): 787-796. |
25 | MOHSEN M O, ZHA L, CABRAL-MIRANDA G, et al.. Major findings and recent advances in virus-like particle (VLP)-based vaccines[J]. Semin. Immunol., 2017, 34: 123-132. |
26 | FRIETZE K M, PEABODY D S, CHACKERIAN B. Engineering virus-like particles as vaccine platforms[J]. Curr. Opin. Virol., 2016, 18: 44-49. |
27 | FIEDLER J D, HIGGINSON C, HOVLID M L, et al.. Engineered mutations change the structure and stability of a virus-like particle[J]. Biomacromolecules, 2012, 13(8): 2339-2348. |
28 | MOHSEN M O, BALKE I, ZINKHAN S, et al.. A scalable and highly immunogenic virus-like particle-based vaccine against SARS-CoV-2[J]. Allergy, 2022, 77(1): 243-257. |
29 | SASAGAWA T, PUSHKO P, STEERS G, et al.. Synthesis and assembly of virus-like particles of human papillomaviruses type 6 and type 16 in fission yeast Schizosaccharomyces pombe [J]. Virology, 1995, 206(1): 126-135. |
30 | LUCKOW V A, LEE S C, BARRY G F, et al.. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli [J]. J. Virol., 1993, 67(8): 4566-4579. |
31 | ESTES M L, EWING-WILSON D, CHOU S M, et al.. Chloroquine neuromyotoxicity. clinical and pathologic perspective[J]. Am. J. Med., 1987, 82(3): 447-455. |
32 | BETENBAUGH M, YU M, KUEHL K, et al.. Nucleocapsid- and virus-like particles assemble in cells infected with recombinant baculoviruses or vaccinia viruses expressing the M and the S segments of Hantaan virus[J]. Virus Res., 1995, 38(2-3): 111-124. |
33 | ROLDÃO A, MELLADO M C M, CASTILHO L R, et al.. Virus-like particles in vaccine development[J]. Expert Rev. Vaccines, 2010, 9(10): 1149-1176. |
34 | GURRAMKONDA C, ADNAN A, GÄBEL T, et al.. Simple high-cell density fed-batch technique for high-level recombinant protein production with Pichia pastoris: application to intracellular production of hepatitis B surface antigen[J/OL]. Microb. Cell Fact., 2009, 8: 13[2024-08-02]. . |
35 | GAVILANES F, GONZALEZ-ROS J M, PETERSON D L. Structure of hepatitis B surface antigen. Characterization of the lipid components and their association with the viral proteins[J]. J. Biol. Chem., 1982, 257(13): 7770-7777. |
36 | PARASHAR U. Advisory Committee on Immunization Practices (ACIP), Centers for Disease Control and Prevention (CDC): Prevention of rotavirus gastroenteritis among infants and children. Recommendations of the Advisory Committee on Immunization Practices (ACIP)[J/OL]. Aust. J. Rural. Health, 2006, doi:10.1111/j.1440-1584.2007.00928.x[2024-08-02]. . |
37 | VESIKARI T, FINN A, VAN DAMME P, et al.. Immunogenicity and safety of a 3-antigen hepatitis B vaccine vs a single-antigen hepatitis B vaccine: a phase 3 randomized clinical trial[J/OL]. JAMA Netw. Open, 2021, 4(10): e2128652[2024-08-02]. . |
38 | GUPTA A K, MACLEOD M A, ABRAMOVITS W. GARDASIL 9 (human papillomavirus 9-valent vaccine, recombinant)[J]. Skinmed, 2016, 14(1): 33-37. |
39 | HU Y M, HUANG S J, CHU K,et al.. Safety of an Escherichia coli-expressed bivalent human papillomavirus (types 16 and 18) L1 virus-like particle vaccine an open-label phase I clinical trial[J]. Human Vaccines Immunother., 2014, 10(2): 1-7. |
40 | ANASTASIA P, CYRA P, ALEXIS P, et al.. Safety of human papillomavirus vaccines: an updated review[J]. Drug Safety Int. J. Med. Toxicol. Drug Exp., 2018, 41:329-346. |
41 | LANINI S, GARBUGLIA A R, LAPA D, et al.. Epidemiology of HEV in the mediterranean basin: 10-year prevalence in Italy[J/OL]. BMJ Open, 2015, 5(7): e007110[2024-08-02]. . |
42 | WU X, CHEN P, LIN H, et al.. Hepatitis E virus: current epidemiology and vaccine[J]. Hum. Vaccin. Immunother., 2016, 12(10): 2603-2610. |
43 | HOLLA R P, AHMAD I, AHMAD Z, et al.. Molecular virology of hepatitis E virus[J]. Semin. Liver Dis., 2013, 33(1): 3-14. |
44 | BRADLEY D W. Hepatitis E virus: a brief review of the biology, molecular virology, and immunology of a novel virus[J]. J. Hepatol., 1995, 22(1 ): 140-145. |
45 | Robust manufacturing and comprehensive characterization of recombinant hepatitis E virus-like particles in Hecolin?[J].Vaccine, 2014, 32(32):4039-4050. |
46 | MAZALOVSKA M, KOUOKAM J C. Progress in the production of virus-like particles for vaccination against hepatitis E virus[J/OL]. Viruses, 2020, 12(8): 826[2024-08-02]. . |
47 | ARORA N, ANBALAGAN LC, PANNU A K. Towards eradication of malaria: is the WHO's RTS, S/AS01 vaccination effective enough?[J]. Risk Manag. Healthc. Policy, 2021, 14: 1033-1039. |
48 | CALLAWAY E. The next generation of coronavirus vaccines: a graphical guide[J]. Nature, 2023, 614(7946): 22-25. |
49 | THOMS F, JENNINGS G T, MAUDRICH M, et al.. Immunization of cats to induce neutralizing antibodies against Fel d 1, the major feline allergen in human subjects[J]. J. Allergy Clin. Immunol., 2019, 144(1): 193-203. |
50 | YILMAZ I C, IPEKOGLU E M, BULBUL A, et al.. Development and preclinical evaluation of virus-like particle vaccine against COVID-19 infection[J]. Allergy, 2022, 77(1): 258-270. |
51 | PILLET S, ARUNACHALAM P S, ANDREANI G, et al.. Safety, immunogenicity, and protection provided by unadjuvanted and adjuvanted formulations of a recombinant plant-derived virus-like particle vaccine candidate for COVID-19 in nonhuman Primates[J]. Cell. Mol. Immunol., 2022, 19(2): 222-233. |
52 | NG K K, PENDÁS-FRANCO N, ROJO J, et al.. Crystal structure of Norwalk virus polymerase reveals the carboxyl terminus in the active site cleft[J]. J. Biol. Chem., 2004, 279(16): 16638-16645. |
53 | JAZAYERI S D, POH C L. Development of universal influenza vaccines targeting conserved viral proteins[J/OL]. Vaccines (Basel), 2019, 7(4): 169[2024-08-02]. . |
54 | BUFFIN S, PEUBEZ I, BARRIÈRE F, et al.. Influenza A and B virus-like particles produced in mammalian cells are highly immunogenic and induce functional antibodies[J]. Vaccine, 2019, 37(46): 6857-6867. |
55 | TISSOT A C, RENHOFA R, SCHMITZ N, et al.. Versatile virus-like particle carrier for epitope based vaccines[J/OL]. PLoS One, 2010, 5(3): e9809[2024-08-02]. . |
56 | CHANG M O, SUZUKI T, SUZUKI H, et al.. HIV-1 Gag-virus-like particles induce natural killer cell immune responses via activation and maturation of dendritic cells[J]. J. Innate Immun., 2012, 4(2): 187-200. |
57 | CHANG M O, SUZUKI T, YAMAMOTO N, et al.. HIV-1 Gag-virus-like particles inhibit HIV-1 replication in dendritic cells and T cells through IFN-α-dependent upregulation of APOBEC3G and 3F[J]. J. Innate Immun., 2012, 4(5-6): 579-590. |
[1] | 焦红燕, 李国超, 常亮, 李岩异, 翟丽丽. 诺如病毒疫苗研究概况[J]. 生物技术进展, 2024, 14(1): 17-25. |
[2] | 李岩异, 吕娜, 贾思凝, 张永红, 张红霞, 张卫婷, 陈金利. 体外组装的病毒样颗粒在疫苗和药物递送中的应用[J]. 生物技术进展, 2023, 13(2): 201-209. |
[3] | 周娜娜, 王小艳, 张媛, 王靖, 赵国淼, 魏超, 杨凯, 安泰. 重组蛋白药物的生产技术进展[J]. 生物技术进展, 2021, 11(6): 724-731. |
[4] | 李丹, 宋浩志, 高维崧, 刘兴健, 张志芳, 李轶女. 小反刍兽疫病毒H蛋白的原核表达及免疫原性测定[J]. 生物技术进展, 2021, 11(6): 770-776. |
[5] | 杨鑫,宋浩志,刘兴健,李轶女,张志芳. 鸡κ干扰素在家蚕杆状病毒表达系统中的表达及其抗病毒活性检测[J]. 生物技术进展, 2020, 10(3): 251-255. |
[6] | 王先翔,赵泽,王朋,刘兴健,胡小元,张志芳,李轶女,房岭丽,叶爱华. 羊λ3干扰素在家蚕杆状病毒表达系统中的表达及其抗病毒活性检测[J]. 生物技术进展, 2019, 9(5): 502-508. |
[7] | 杜梦潭,刘兴健,胡小元,张志芳,李轶女. 腺相关病毒的生产方式及其在基因治疗中的应用[J]. 生物技术进展, 2019, 9(4): 326-331. |
[8] | 赵璐璐,赵泽,杨鑫,刘兴健,胡小元,张志芳,李轶女. 牛λ3干扰素在家蚕杆状病毒表达系统中的表达及其抗病毒活性检测[J]. 生物技术进展, 2018, 8(5): 420-425. |
[9] | 鲁念,刘兴健,胡小元,李轶女,易咏竹,张志芳. 利用BmNPV-家蚕表达系统包装重组腺相关病毒2型(rAAV2)研究[J]. 生物技术进展, 2018, 8(1): 71-77. |
[10] | 刘兴健,杨鑫,张志芳,李轶女,易咏竹,胡小元. 猫ω-like干扰素在家蚕中的表达和生物活性检测[J]. 生物技术进展, 2015, 5(6): 441-445. |
[11] | 张云鹏,温彤,姜伟. 大肠杆菌和酵母表达系统的研究进展[J]. 生物技术进展, 2014, 4(6): 389-393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部