生物技术进展 ›› 2024, Vol. 14 ›› Issue (5): 768-775.DOI: 10.19586/j.2095-2341.2024.0125
• 进展评述 • 上一篇
吕家硕(), 任衍棋, 徐湘敏, 张译文, 刘晓晖, 刘成珍(
)
收稿日期:
2024-07-09
接受日期:
2024-08-13
出版日期:
2024-09-25
发布日期:
2024-10-22
通讯作者:
刘成珍
作者简介:
吕家硕 E-mail:2802161736@qq.com;
基金资助:
Jiashuo LYU(), Yanqi REN, Xiangmin XU, Yiwen ZHANG, Xiaohui LIU, Chengzhen LIU(
)
Received:
2024-07-09
Accepted:
2024-08-13
Online:
2024-09-25
Published:
2024-10-22
Contact:
Chengzhen LIU
摘要:
微塑料(microplastics, MPs)通常是指粒径小于5 mm的塑料纤维、颗粒或者薄膜,其遍布于海洋和陆地的各个环境介质中,是生态系统中的主要污染物,可被生物吸收,产生生态风险和健康风险。由于生物法降解MPs具有成本低、环境友好等特点,拥有广阔的应用前景,是未来MPs降解的总发展趋势。综述了MPs对环境和生物造成的影响,并详细介绍了MPs对人体的潜在毒性,讨论了多种降解MPs的方式(细菌、真菌、生物膜)和机制,以期为进一步研究微塑料的生态风险和高效降解策略提供科学参考。
中图分类号:
吕家硕, 任衍棋, 徐湘敏, 张译文, 刘晓晖, 刘成珍. 微塑料及其生物降解研究进展[J]. 生物技术进展, 2024, 14(5): 768-775.
Jiashuo LYU, Yanqi REN, Xiangmin XU, Yiwen ZHANG, Xiaohui LIU, Chengzhen LIU. Research Progress on Microplastics and Their Biodegradation[J]. Current Biotechnology, 2024, 14(5): 768-775.
[ | ||||
[ | ||||
[ | ||||
[ | ||||
[ | ||||
[ |
表1 微生物对于不同类型塑料的降解效果
Table1 The degradation effect of microorganisms on different types of plastics
[ | ||||
[ | ||||
[ | ||||
[ | ||||
[ | ||||
[ |
塑料名称 | 相关降解酶 | 参考文献 |
---|---|---|
聚氨酯(PUR) | 酯酶、蛋白酶、角质酶 | [ |
聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET) | 脂肪酶、角质酶、羧酸酯酶 | [ |
聚苯乙烯(polystyrene, PS) | 苯乙烯单加氧酶 | [ |
聚乙烯醇(polyvinylalcoho, PVA) | 聚乙烯醇氧化酶 | [ |
表2 塑料降解相关酶
Table 2 Enzymes related to plastic degradation
塑料名称 | 相关降解酶 | 参考文献 |
---|---|---|
聚氨酯(PUR) | 酯酶、蛋白酶、角质酶 | [ |
聚对苯二甲酸乙二醇酯(polyethylene terephthalate, PET) | 脂肪酶、角质酶、羧酸酯酶 | [ |
聚苯乙烯(polystyrene, PS) | 苯乙烯单加氧酶 | [ |
聚乙烯醇(polyvinylalcoho, PVA) | 聚乙烯醇氧化酶 | [ |
1 | CHEN J, WU J, SHERRELL P C, et al.. How to build a microplastics-free environment: strategies for microplastics degradation and plastics recycling[J/OL]. Adv. Sci.(Weinh), 2022, 9(6): e2103764[2024-06-12]. . |
2 | LV S, CUI K, ZHAO S, et al.. Continuous generation and release of microplastics and nanoplastics from polystyrene by plastic-degrading marine bacteria[J/OL]. J. Hazard. Mater., 2024, 465: 133339[2024-06-12]. . |
3 | ZURI G, KARANASIOU A, LACORTE S. Human biomonitoring of microplastics and health implications: a review[J/OL]. Environ. Res., 2023, 237(Pt 1): 116966[2024-06-12]. . |
4 | DU Z, LI G, DING S, et al.. Effects of UV-based oxidation processes on the degradation of microplastic: fragmentation, organic matter release, toxicity and disinfection byproduct formation[J/OL]. Water Res., 2023, 237: 119983[2024-06-12]. . |
5 | CAI Z, LI M, ZHU Z, et al.. Biological degradation of plastics and microplastics: a recent perspective on associated mechanisms and influencing factors[J/OL]. Microorganisms, 2023, 11(7): 1661[2024-06-12]. . |
6 | 肖庆,王国增,韩静,等.微塑料生物毒性研究现状及热点可视化剖析[J].生物技术进展,2023,13(4):619-627. |
XIAO Q, WANG G Z, HAN J, et al.. Visual analysis of the research status and hotpots of microplastic biotoxicity[J]. Curr. Biotechnol., 2023, 13(4): 619-627. | |
7 | ISOBE A, AZUMA T, CORDOVA M R, et al.. A multilevel dataset of microplastic abundance in the world's upper ocean and the Laurentian Great Lakes[J/OL]. Microplast. Nanoplast., 2021, 1(1): 16[2024-06-12]. . |
8 | SHARMA S, CHATTERJEE S. Microplastic pollution, a threat to marine ecosystem and human health: a short review[J]. Environ. Sci. Pollut. Res. Int., 2017, 24(27): 21530-21547. |
9 | HALE R C, SEELEY M E, LA GUARDIA M J, et al.. A global perspective on microplastics[J/OL]. J. Geophys. Res., Oceans, 2020, 125(1): e2018JC014719[2024-06-12]. . |
10 | MASHIRIN K R, CHITRA K C. Microplastics-an emerging threat in the Indian waterbodies[J]. Mar. Biol. Res., 2022, 18(1-2): 1-12. |
11 | LASKAR N, KUMAR U. Plastics and microplastics: a threat to environment[J/OL]. Environ. Technol. Innov., 2019, 14: 100352[2024-06-12]. . |
12 | MAMMO F K, AMOAH I D, GANI K M, et al.. Microplastics in the environment: interactions with microbes and chemical contaminants[J/OL]. Sci. Total Environ., 2020, 743: 140518[2024-06-12]. . |
13 | LEE K W, SHIM W J, KWON O Y, et al.. Size-dependent effects of micro polystyrene particles in the marine copepod Tigriopus japonicus [J]. Environ. Sci. Technol., 2013, 47(19): 11278-11283. |
14 | RILLIG M C, LEIFHEIT E, LEHMANN J. Microplastic effects on carbon cycling processes in soils[J/OL]. PLoS Biol., 2021, 19(3): e3001130[2024-06-12]. . |
15 | MBACHU O, JENKINS G, KAPARAJU P, et al.. The rise of artificial soil carbon inputs: reviewing microplastic pollution effects in the soil environment[J/OL]. Sci. Total Environ., 2021, 780: 146569[2024-06-12]. . |
16 | WANG Q, ADAMS C A, WANG F, et al.. Interactions between microplastics and soil fauna: a critical review[J]. Crit. Rev. Environ. Sci. Technol., 2022, 52(18): 3211-3243. |
17 | CHAI B, WEI Q, SHE Y, et al.. Soil microplastic pollution in an e-waste dismantling zone of China[J]. Waste Manag., 2020, 118: 291-301. |
18 | ZHANG Y, KANG S, ALLEN S, et al.. Atmospheric microplastics: a review on current status and perspectives[J/OL]. Earth Sci. Rev., 2020, 203: 103118[2024-06-12]. . |
19 | KLEIN M, FISCHER E K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany[J]. Sci. Total Environ., 2019, 685: 96-103. |
20 | LIU K, WANG X, FANG T, et al.. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai[J]. Sci. Total Environ., 2019, 675: 462-471. |
21 | WRIGHT S L, KELLY F J. Plastic and human health: a micro issue?[J]. Environ. Sci. Technol., 2017, 51(12): 6634-6647. |
22 | DAS A. The emerging role of microplastics in systemic toxicity: involvement of reactive oxygen species (ROS)[J/OL]. Sci. Total Environ., 2023, 895: 165076[2024-06-12]. . |
23 | DONG C D, CHEN C W, CHEN Y C, et al.. Polystyrene microplastic particles: in vitro pulmonary toxicity assessment[J/OL]. J. Hazard. Mater., 2020, 385: 121575[2024-06-12]. . |
24 | ZHANG H, ZHANG S, DUAN Z, et al.. Pulmonary toxicology assessment of polyethylene terephthalate nanoplastic particles in vitro [J/OL]. Environ. Int., 2022, 162: 107177[2024-06-12]. . |
25 | WANG Y L, LEE Y H, HSU Y H, et al.. The kidney-related effects of polystyrene microplastics on human kidney proximal tubular epithelial cells HK-2 and male C57BL/6 mice[J/OL]. Environ. Health Perspect., 2021, 129(5): 57003[2024-06-12]. . |
26 | CHEN Y C, CHEN K F, LIN K-Y A, et al.. The nephrotoxic potential of polystyrene microplastics at realistic environmental concentrations[J/OL]. J. Hazard. Mater., 2022, 427: 127871[2024-06-12]. . |
27 | ABARGHOUEI S, HEDAYATI A, RAEISI M, et al.. Size-dependent effects of microplastic on uptake, immune system, related gene expression and histopathology of goldfish (Carassius auratus)[J/OL]. Chemosphere, 2021, 276: 129977[2024-06-12]. . |
28 | ARAÚJO A P D C, GOMES A R, MALAFAIA G. Hepatotoxicity of pristine polyethylene microplastics in neotropical Physalaemus cuvieri tadpoles (Fitzinger, 1826)[J/OL]. J. Hazard. Mater., 2020, 386: 121992[2024-06-12]. . |
29 | HUANG T, ZHANG W, LIN T, et al.. Maternal exposure to polystyrene nanoplastics during gestation and lactation induces hepatic and testicular toxicity in male mouse offspring[J/OL]. Food Chem. Toxicol., 2022, 160: 112803[2024-06-12]. . |
30 | BAKIR A, ROWLAND S J, THOMPSON R C. Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions[J]. Environ. Pollut., 2014, 185: 16-23. |
31 | AUTA H S, EMENIKE C U, FAUZIAH S H. Distribution and importance of microplastics in the marine environment: a review of the sources, fate, effects, and potential solutions[J]. Environ. Int., 2017, 102: 165-176. |
32 | AUTA H S, EMENIKE C U, JAYANTHI B, et al.. Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sediment[J]. Mar. Pollut. Bull., 2018, 127: 15-21. |
33 | YUAN J, CAO J, YU F, et al.. Microbial degradation of polystyrene microplastics by a novel isolated bacterium in aquatic ecosystem[J/OL]. Sustain. Chem. Pharm., 2022, 30: 100873[2024-06-12]. . |
34 | YANG J, YANG Y, WU W M, et al.. Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms[J]. Environ. Sci. Technol., 2014, 48(23): 13776-13784. |
35 | NAKAJIMA-KAMBE T, ONUMA F, AKUTSU Y, et al.. Determination of the polyester polyurethane breakdown products and distribution of the polyurethane degrading enzyme of Comamonas acidovorans strain TB-35[J]. J. Ferment. Bioeng., 1997, 83(5): 456-460. |
36 | VOLKE-SEPÚLVEDA T, SAUCEDO-CASTAÑEDA G, GUTIÉRREZ-ROJAS M, et al.. Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger [J]. J. Appl. Polym. Sci., 2002, 83(2): 305-314. |
37 | TSIOTA P, KARKANORACHAKI K, SYRANIDOU E, et al.. Microbial degradation of HDPE secondary microplastics: preliminary results[M]// Springer Water Cham: Springer International Publishing, 2017: 181-188. |
38 | PARK S Y, KIM C G. Biodegradation of micro-polyethylene particles by bacterial colonization of a mixed microbial consortium isolated from a landfill site[J]. Chemosphere, 2019, 222: 527-533. |
39 | PATHAK V M, NAVNEET. Exploitation of bacterial strains for microplastics (LDPE) biodegradation[J/OL]. Chemosphere, 2023, 316: 137845[2024-06-12]. . |
40 | CHIGWADA A D, TEKERE M. The plastic and microplastic waste menace and bacterial biodegradation for sustainable environmental clean-up a review[J/OL]. Environ. Res., 2023, 231(Pt 1): 116110[2024-06-12]. . |
41 | KRUEGER M C, HOFMANN U, MOEDER M, et al.. Potential of wood-rotting fungi to attack polystyrene sulfonate and its depolymerisation by Gloeophyllum trabeum via hydroquinone-driven Fenton chemistry[J/OL]. PLoS One, 2015, 10(7): e0131773[2024-06-12]. . |
42 | RUSSELL J R, HUANG J, ANAND P, et al.. Biodegradation of polyester polyurethane by endophytic fungi[J]. Appl. Environ. Microbiol., 2011, 77(17): 6076-6084. |
43 | SOLANKI S, SINHA S, SINGH R. Myco-degradation of microplastics: an account of identified pathways and analytical methods for their determination[J]. Biodegradation, 2022, 33(6): 529-556. |
44 | AHMED T, SHAHID M, AZEEM F, et al.. Biodegradation of plastics: current scenario and future prospects for environmental safety[J]. Environ. Sci. Pollut. Res. Int., 2018, 25(8): 7287-7298. |
45 | KARICH A, ULLRICH R, SCHEIBNER K, et al.. Fungal unspecific peroxygenases oxidize the majority of organic EPA priority pollutants[J/OL]. Front. Microbiol., 2017, 8: 1463[2024-06-12]. . |
46 | MIAO L, WANG P, HOU J, et al.. Distinct community structure and microbial functions of biofilms colonizing microplastics[J]. Sci. Total Environ., 2019, 650(Pt 2): 2395-2402. |
47 | EYHERAGUIBEL B, TRAIKIA M, FONTANELLA S, et al.. Characterization of oxidized oligomers from polyethylene films by mass spectrometry and NMR spectroscopy before and after biodegradation by a Rhodococcus rhodochrous strain[J]. Chemosphere, 2017, 184: 366-374. |
48 | WEI R, BREITE D, SONG C, et al.. Biocatalytic degradation efficiency of postconsumer polyethylene terephthalate packaging determined by their polymer microstructures[J/OL]. Adv. Sci. (Weinh), 2019, 6(14): 1900491[2024-06-12]. . |
49 | HO B T, ROBERTS T K, LUCAS S. An overview on biodegradation of polystyrene and modified polystyrene: the microbial approach[J]. Crit. Rev. Biotechnol., 2018, 38(2): 308-320. |
50 | WILKES R A, ARISTILDE L. Degradation and metabolism of synthetic plastics and associated products by Pseudomonas sp., capabilities and challenges[J]. J. Appl. Microbiol., 2017, 123(3): 582-593. |
51 | 苗瑞菊,丁尊丹,田健,等.PET水解酶传统与智能分子设计研究进展[J].生物技术进展,2023,13(1):46-54. |
MIAO R J, DING Z D, TIAN J, et al.. Research advances on traditional and intelligent molecular design of PET hydrolases[J]. Curr. Biotechnol., 2023, 13(1): 46-54. | |
52 | KAWAI F, KAWABATA T, ODA M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields[J]. Appl. Microbiol. Biotechnol., 2019, 103(11): 4253-4268. |
53 | CUI Y, CHEN Y, LIU X, et al.. Computational redesign of a PETase for plastic biodegradation under ambient condition by the GRAPE strategy[J]. ACS Catal., 2021, 11(3): 1340-1350. |
[1] | 肖庆, 王国增, 韩静, 刘小兰. 微塑料生物毒性研究现状及热点可视化剖析[J]. 生物技术进展, 2023, 13(4): 619-627. |
[2] | 林嘉意, 谢炬, 朱越平, 谢文玉. 代谢组学及其在环境毒理学中的应用[J]. 生物技术进展, 2022, 12(5): 683-689. |
[3] | 吴信, 万丹, 印遇龙. 畜禽钙磷和微量元素营养研究进展[J]. 生物技术进展, 2021, 11(4): 455-461. |
[4] | 赵冬雪,刘璐,穆迎春,韩刚,张洪玉,房洪博,阮志勇4,宋金龙. 磺胺甲恶唑高效降解菌群的多样性分析和降解微生物的分离表征[J]. 生物技术进展, 2021, 11(2): 196-203. |
[5] | 王森,张卡,王泳浩,许雷. 一株油脂降解菌的筛选鉴定及降解效果分析[J]. 生物技术进展, 2021, 11(1): 99-104. |
[6] | 张明霞,李安章,陈猛,徐帅帅,朱红惠. 异养硝化-好氧反硝化菌脱氮相关酶系及其编码基因的研究进展[J]. 生物技术进展, 2020, 10(1): 40-45. |
[7] | 秦伟彤,田健,伍宁丰. 全细胞生物传感器的设计及其在环境监测中的应用[J]. 生物技术进展, 2018, 8(5): 369-375. |
[8] | 陈度宇,王森,张宇,许雷. 一株缩合单宁降解菌的筛选、鉴定及降解效果分析[J]. 生物技术进展, 2018, 8(4): 345-350. |
[9] | 张娱,刘智峰,陈明,刘世军,许洪波,唐志书 . 酰胺生物降解机制的分子模拟研究[J]. 生物技术进展, 2018, 8(2): 153-160. |
[10] | 罗胜南,尚润东,靳永胜. 我国微生物法去除氨氮研究进展[J]. 生物技术进展, 2017, 7(2): 155-160. |
[11] | 杜瑞英,王艳红,唐明灯,李盟军,艾绍英. 石灰对铅污染土壤修复效果评价[J]. 生物技术进展, 2015, 5(6): 461-467. |
[12] | 李贵珍,赖其良,闫培生,邵宗泽,. 海洋石油污染及其微生物修复研究进展[J]. 生物技术进展, 2015, 5(3): 164-169. |
[13] | 李梦娇,彭晟,徐绍忠,余代宏,赵明富,文国松 . 克雷伯氏菌在农业与环境治理上的应用[J]. 生物技术进展, 2014, 4(6): 415-420. |
[14] | 杨瑞红. 微生物降解硝基芳香族化合物(NAC)的研究进展[J]. 生物技术进展, 2014, 4(3): 171-176. |
[15] | 吴佩春,王海涛,刘亚男,信艳娟,曹旭鹏,薛松. 海绵中石油降解微生物的分离筛选及降解特性研究[J]. 生物技术进展, 2014, 4(1): 44-48. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部