1 |
TAN L, ZHANG Y, QIAO C, et al.. NDV entry into dendritic cells through macropinocytosis and suppression of T lymphocyte proliferation[J]. Virology, 2018, 518: 126-135.
|
2 |
MA Y, FENG Y, LIU D, et al.. Avian influenza virus, Streptococcus suis serotype 2, severe acute respiratory syndrome-coronavirus and beyond: molecular epidemiology, ecology and the situation in China[J]. Philos. Trans. R. Soc. B, 2009, 364(1530): 2725-2737.
|
3 |
郑彦清.肉用仔鸡新城疫继发链球菌病的诊治[J].广西畜牧兽医,2000,16(2):31-32.
|
|
ZHENG Y Q. Diagnosis and treatment of streptococcosis secondary to Newcastle disease in broilers[J]. Guangxi J. Anim. Husb. Vet. Med., 2000, 16(2): 31-32.
|
4 |
CRISPO M, SHIVAPRASAD H L, COOPER G L, et al.. Streptococcosis in commercial and noncommercial avian species in California: 95 cases (2000-2017)[J]. Avian Dis., 2018, 62(2): 152-162.
|
5 |
BELLO M B, YUSOFF K, IDERIS A, et al.. Diagnostic and vaccination approaches for Newcastle disease virus in poultry: the current and emerging perspectives[J/OL]. BioMed Res. Int., 2018, 2018: 7278459[2024-04-16]. .
|
6 |
谭爱新.鸡新城疫的临床诊断及防控措施[J].中兽医学杂志,2022(11):78-80.
|
|
TAN A X. Clinical diagnosis and control measures of Newcastle disease in chickens[J]. Chin. J. Tradit. Vet. Sci., 2022(11): 78-80.
|
7 |
倪迪,戴丙亮,赵晓波,等.浅谈鸡链球菌病的流行及其防治措施[J].畜禽业,2018,29(4):108.
|
|
NI D, DAI B L, ZHAO X B, et al.. On the prevalence of chicken streptococcosis and its control measures[J]. Livest. Poult. Ind., 2018, 29(4): 108.
|
8 |
SUSTA L, SEGOVIA D, OLIVIER T L, et al.. Newcastle disease virus infection in quail[J]. Vet. Pathol., 2018, 55(5): 682-692.
|
9 |
MCCULLERS J A. Insights into the interaction between influenza virus and pneumococcus[J]. Clin. Microbiol. Rev., 2006, 19(3): 571-582.
|
10 |
SAELAO P, WANG Y, CHANTHAVIXAY G, et al.. Genetics and genomic regions affecting response to Newcastle disease virus infection under heat stress in layer chickens[J/OL]. Genes, 2019, 10(1): 61[2024-04-16]. .
|
11 |
VAN DAM S, VÕSA U, VAN DER GRAAF A, et al.. Gene co-expression analysis for functional classification and gene-disease predictions[J]. Brief. Bioinform., 2018, 19(4): 575-592.
|
12 |
KISHIMOTO T. Interleukin-6 and its receptor in autoimmunity[J]. J. Autoimmun., 1992, 5(): 123-132.
|
13 |
AKIRA S, KISHIMOTO T. IL-6 and NF-IL6 in acute-phase response and viral infection[J]. Immunol. Rev., 1992, 127: 25-50.
|
14 |
RACICOT K, KWON J Y, ALDO P, et al.. Type I interferon regulates the placental inflammatory response to bacteria and is targeted by virus: mechanism of polymicrobial infection-induced preterm birth[J]. Am. J. Reprod. Immunol., 2016, 75(4): 451-460.
|
15 |
MICHEAU O, TSCHOPP J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes[J]. Cell, 2003, 114(2): 181-190.
|
16 |
SZMOLKA A, WIENER Z, MATULOVA M E, et al.. Gene expression profiles of chicken embryo fibroblasts in response to Salmonella enteritidis infection[J/OL]. PLoS ONE, 2015, 10(6): e0127708[2024-04-16]. .
|
17 |
HASHIGUCHI M, KASHIWAKURA Y, KANNO Y, et al.. Tumor necrosis factor superfamily member (TNFSF) 13 (APRIL) and TNFSF13B (BAFF) downregulate homeostatic immunoglobulin production in the intestines[J]. Cell. Immunol., 2018, 323: 41-48.
|
18 |
LECHMANN M, BERCHTOLD S, HAUBER J, et al.. CD83 on dendritic cells: more than just a marker for maturation[J]. Trends Immunol., 2002, 23(6): 273-275.
|
19 |
MAYURAMART O, POOMIPAK W, RATTANABURI S, et al.. IRF7-deficient MDCK cell based on CRISPR/Cas9 technology for enhancing influenza virus replication and improving vaccine production[J/OL]. PeerJ, 2022, 10: e13989[2024-04-16]. .
|
20 |
WANG Z, NING Z, SUN M, et al.. Interferon regulatory factor 7-(IRF7-) mediated immune response affects Newcastle disease virus replication in chicken embryo fibroblasts[J]. Acta Vet. Hung., 2014, 62(4): 500-511.
|
21 |
李燕荣.新城疫病毒通过内质网压力应激反应诱导细胞凋亡研究[D].北京:中国农业科学院,2018.
|
22 |
MANIK M, SINGH R K. Role of toll-like receptors in modulation of cytokine storm signaling in SARS-CoV-2-induced COVID-19[J]. J. Med. Virol., 2022, 94(3): 869-877.
|
23 |
CHEN Y, ZHONG W, XIE Z, et al.. Suppressor of cytokine signaling 1 (SOCS1) inhibits antiviral responses to facilitate Senecavirus A infection by regulating the NF-κB signaling pathway[J/OL]. Virus Res., 2022, 313: 198748[2024-04-16]. .
|
24 |
STARR R, WILLSON T A, VINEY E M, et al.. A family of cytokine-inducible inhibitors of signalling[J]. Nature, 1997, 387(6636): 917-921.
|