1 |
OLDHAM R K, DILLMAN R O. Monoclonal antibodies in cancer therapy: 25 years of progress [J] . J. Clin. Oncol., 2008, 26(11): 1774-1777.
|
2 |
ZOU W P, WOLCHOK J D, CHEN L P. PD‑L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers and combinations [J]. Sci. Transl. Med., 2016, 8 (328): 1-14.
|
3 |
CHEN L P, HAN X. Anti-PD-1 PD‑L1 therapy of human cancer: past, present, and future [J]. J. Clin. Invest., 2015, 125(9): 3384-3391.
|
4 |
BRAHMER J R, TYKODI S S, CHOW L Q M, et al.. Safety and activity of Anti-PD‑L1 antibody in patients with advanced cancer [J]. N. Engl J. Med., 2012, 366(26): 2455-2465.
|
5 |
ASANO R, NAGAI K, MAKABE K, et al.. Structural considerations for functional anti-EGFR × anti-CD3 bispecific diabodies in light of domain order and binding affinity [J]. Oncotarget, 2018, 9(17): 3884-13893.
|
6 |
SEO J W, TAVARE R, MAHAKIAN L M, et al.. CD8 T-cell density imaging with Cu-labeled cys-diabody informs immunotherapy protocols [J]. Clin. Cancer Res., 2018, 24(20): 4976-4987.
|
7 |
OLAFSEN T, SIRK S J, BETTING D J, et al.. ImmunoPET imaging of B-cell lymphoma using 124I-anti-CD20 scFv dimers (diabodies) [J]. Protein Eng. Des. Sel., 2010, 4(23): 243-249.
|
8 |
RABENHOLD M, STEINIGER F, FAHR A, et al.. Bispecific single-chain diabody-immunoliposomes targeting endoglin (CD105) and fibroblast activation protein (FAP) simultaneously [J]. J. Control, Release, 2015, 201: 56-67.
|
9 |
HAYASHI H, ASANO R, TSUMOTO Y, et al.. A highly effective and stable bispecific diabody for cancer immunotherapy: cure of xenografted tumors by bispecific diabody and T-LAK cells[J]. Cancer Immunol. Immun., 2004, 53: 497-509.
|
10 |
ASANO R, KAWAGUCHI H, WATANABE Y, et al.. Diabody-based recombinant formats of humanized igg-like bispecific antibody with effective retargeting of lymphocytes to tumor cells[J]. J. Immun., 2008, 31(8): 752-761.
|
11 |
THAKUR A, HUANG M, LUM L G. Bispecific antibody based therapeutics: strengths and challenges [J]. Blood Rev., 2018, 32(4): 339-347.
|
12 |
KONTERMANN R E, BRINKMANN U. Bispecific antibodies[J]. Drug Discov., 2015, 20(7): 838-847.
|
13 |
周伟,朱乃硕.对比ELISA、SPR及BLI技术在单克隆抗体筛选中的应用[J].世界最新医学信息文摘,2019,19(44):9-12.
|
14 |
WANG C Y, LI W T, DRABEK D, et al.. A human monoclonal antibody blocking SARS-CoV-2 infection [J]. Nat. Commun., 2020, 11(1): 2511-2511.
|
15 |
CARVALHO S B, MOREIRA A S, GOMES J. A detection and quantification label-free tool to speed up downstream processing of model mucins [J]. PLoS ONE, 2018, 13(1): 1-14.
|
16 |
MARAGOS C M. Detection of deoxynivalenol using biolayer interferometry[J]. Mycotoxin Res., 2011, 27(3): 157-165.
|
17 |
CONCEPCION J, WITTE K, WARTCHOW C, et al.. Label-free detection of biomolecular interactions using biolayer interferometry for kinetic characterization[J]. Comb. Chem. High Throughput Screen., 2009, 12(8): 791-800.
|
18 |
KAMAT V, RAFIQUE A. Designing binding kinetic assay on the bio-layer interferometry (BLI) biosensor to characterize antibody-antigen interactions[J]. Anal. Biochem., 2017, 536: 16-31.
|
19 |
LV G C, SUN X R, QIU L, et al.. PET imaging of tumor PD‑L1 expression with a highly specific nonblocking single-domain antibody [J]. J. Nucl. Med., 2020, 61(1): 177-122.
|
20 |
ZHANG F, WEI H D, WANG X X, et al.. Structural basis of a novel PD‑L1 nanobody for immune checkpoint blockade [J]. Cell Discov., 2017, 3: 1-12.
|
21 |
LIN D Y, TANAKA Y, IWASAKI M, et al.. The PD-1/PD‑L1 complex resembles the antigen-binding Fv domains of antibodies and T cell receptors[J]. Proc. Natl. Acad. Sci. USA, 2008, 105(8): 3011-3016.
|
22 |
CHOI J K, WITHERS S S, CHANG H, et al.. Development of canine PD-1/PD‑L1 specific monoclonal antibodies and amplification of canine T cell function [J]. PLoS ONE, 2020, 15(7): 1-23.
|
23 |
TROTTER D E, MENG X G, MCQUADE P, et al.. In vivo imaging of the programmed death ligand 1 by 18F PET [J]. J. Nucl. Med., 2017, 58(11): 1852-1857.
|