生物技术进展 ›› 2025, Vol. 15 ›› Issue (1): 1-10.DOI: 10.19586/j.2095-2341.2024.0121
• 进展评述 •
蒲文宣1(), 戴曦2, 岳佳妮3, 付秀霞4, 宋娜3, 李魏3, 彭宇1(
)
收稿日期:
2024-07-02
接受日期:
2024-10-14
出版日期:
2025-01-25
发布日期:
2025-03-07
通讯作者:
彭宇
作者简介:
蒲文宣E-mail: puwenxuan0313@163.com;
基金资助:
Wenxuan PU1(), Xi DAI2, Jiani YUE3, Xiuxia FU4, Na SONG3, Wei LI3, Yu PENG1(
)
Received:
2024-07-02
Accepted:
2024-10-14
Online:
2025-01-25
Published:
2025-03-07
Contact:
Yu PENG
摘要:
铁是植物与植物病原物的必需微量元素。土壤中铁含量虽然十分丰富,但基本以不溶的化合物形式存在,不能直接被植物体吸收。为了满足自身生长发育需要,植物在长期的进化过程中,形成了基于还原机制和螯合机制两种铁吸收和铁转运系统。目前对植物铁吸收机制和铁元素在植物-病原物互作的综述相对较少,总结了植物体内铁吸收的两种策略及分子机制,铁在植物细胞内的运输和植物体内响应铁信号的通路,铁对植物免疫反应和病原物致病性的影响等方面的研究进展,以期为植物铁信号途径以及铁在植物-病原物互作中的功能研究提供参考,为作物栽培提供新思路。
中图分类号:
蒲文宣, 戴曦, 岳佳妮, 付秀霞, 宋娜, 李魏, 彭宇. 铁信号及其在植物-病原物互作中的研究进展[J]. 生物技术进展, 2025, 15(1): 1-10.
Wenxuan PU, Xi DAI, Jiani YUE, Xiuxia FU, Na SONG, Wei LI, Yu PENG. Research Progress of Iron Signaling and its Role in Plant-pathogen Interaction[J]. Current Biotechnology, 2025, 15(1): 1-10.
图2 策略Ⅱ植物体内铁吸收机制注:TOM—麦根酸家族植物铁载体转运体;YS1/YSL—黄斑类转运体;PS—植物铁载体; L-Met—L-甲硫氨酸; SAM—S-腺苷基甲硫蛋氨酸; NA—烟胺; DMA—2,-脱氧麦根酸。
Fig. 2 Iron absorption mechanism of strategyⅡin plants
1 | KOBAYASHI T, NOZOYE T, NISHIZAWA N K. Iron transport and its regulation in plants[J]. Free Radic. Bio. Med., 2019, 133: 11-20. |
2 | YONEYAMA T. Iron delivery to the growing leaves associated with leaf chlorosis in mugineic acid family phytosiderophores-generating graminaceous crops[J]. Soil Sci. Plant Nutr., 2021, (15): 1-12. |
3 | IMRAN M, SUN X, HUSSAIN S, et al.. Molybdenum-induced effects on nitrogen metabolism enzymes and elemental profile of winter wheat (Triticum aestivum L.) under different nitrogen sources[J/OL]. Int. J. Mol. Sci., 2019, 20(12): E3009[2025-1-10]. . |
4 | VOSE P B. Iron nutrition in plants: a world overview[J]. J. Plant Nut., 1982, 5(4-7): 233-249. |
5 | AUNG M S, MASUDA H. How does rice defend against excess iron? Physiological and molecular mechanisms[J/OL]. Front. Plant Sci., 2020, 11: 1102[2024-12-30]. . |
6 | ELBASUNEY S, EL-SAYYAD G S, ATTIA M S, et al.. Ferric oxide colloid:towards green nano-fertilizer for tomato plant with enhanced vegetative growth and immune response against Fusarium wilt disease[J]. J.Inorg.Organomet.Polym.Mater., 2022, 32(11): 4270-4283. |
7 | GUERINOT M L. It's elementary: enhancing Fe3+ reduction improves rice yields[J]. Proc. Natl. Acad. Sci. USA, 2007, 104(18):7311-7312. |
8 | TSAI H H, RODRÍGUEZ-CELMA J, LAN P, et al.. Scopoletin 8-hydroxylase-mediated fraxetin production is crucial for iron mobilization[J]. Plant Physiol., 2018, 177(1): 194-207. |
9 | ROBE K, CONEJERO G, GAO F, et al.. Coumarin accumulation and trafficking in Arabidopsis thaliana: a complex and dynamic process[J]. New Phytol., 2021, 229(4): 2062-2079. |
10 | ROBE K, IZQUIERDO E, VIGNOLS F, et al.. The coumarins:secondary metabolites playing a primary role in plant nutrition and health[J]. Trends Plant Sci., 2021, 26(3): 248-259. |
11 | HARBORT C J, HASHIMOTO M, INOUE H, et al.. Root-secreted coumarins and the microbiota interact to improve iron nutrition in Arabidopsis [J]. Cell Host Microbe, 2020, 28(6): 825-837. |
12 | DJAVAHERI M, MERCADO-BLANCO J, VERSLUIS C, et al.. Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv.tomato in Arabidopsis [J]. MicrobiologyOpen, 2012, 1(3): 311-325. |
13 | LI L H, CHENG X D, LING H Q. Isolation and characterization of Fe(Ⅲ)-chelate reductase gene LeFRO1 in tomato[J]. Plant Mol. Biol., 2004, 54(1): 125-136. |
14 | WATERS B M, LUCENA C, ROMERA F J, et al.. Ethylene involvement in the regulation of the H(+)-ATPase CsHA1 gene and of the new isolated ferric reductase CsFRO1 and iron transporter CsIRT1 genes in cucumber plants[J]. Plant Physiol.Biochem., 2007, 45(5): 293-301. |
15 | FOURCROY P, TISSOT N, GAYMARD F, et al.. Facilitated Fe nutrition by phenolic compounds excreted by the Arabidopsis ABCG37/PDR9 transporter requires the IRT1/FRO2 high-affinity root Fe(2+) transport system[J]. Mol.Plant, 2016, 9(3):485-488. |
16 | DEY S, REGON P, KAR S, et al.. Chelators of iron and their role in plant's iron management[J]. Physiol.Mol.Biol.Plants, 2020, 26(8): 1541-1549. |
17 | HERLIHY J H, LONG T A, MCDOWELL J M. Iron homeostasis and plant immune responses:recent insights and translational implications[J]. J. Biol. Chem., 2020, 295(39):13444-13457. |
18 | WANG M, GONG J, BHULLAR N K. Iron deficiency triggered transcriptome changes in bread wheat[J]. Comput.Struct.Biotechnol. J., 2020, 18: 2709-2722. |
19 | DU X Y, WANG H N, HE J F, et al.. Identification of nicotianamine synthase genes in Triticum monococcum and their expression under different Fe and Zn concentrations[J]. Gene, 2018, 672: 1-7. |
20 | 李洪有,钟长春,蔡芳,等.甜荞柠檬酸转运蛋白基因FeFRD3的克隆及表达分析[J]. 西北植物学报,2018,38(3):409-415. |
LI H Y, ZHONG C C, CAI F, et al.. Cloning and expression analysis of FeFRD3 citrate efflux transporter gene in Fagopyrum esculentum [J]. Acta Bot.Boreali. Occidentalia Sin., 2018, 38(3): 409-415. | |
21 | ZHU C Q, ZHANG J H, ZHU L F, et al.. NH4+ facilitates iron reutilization in the cell walls of rice (Oryza sativa) roots under iron-deficiency conditions[J]. Environ. Exp. Bot., 2018, 151: 21-31. |
22 | EIDE D, BRODERIUS M, FETT J, et al.. A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proc.Natl.Acad.Sci.USA, 1996, 93(11):5624-5628. |
23 | CONTE S S, WALKER E L. Transporters contributing to iron trafficking in plants[J]. Mol. Plant, 2011, 4(3): 464-476. |
24 | LIN Y F, LIANG H M, YANG S Y, et al.. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter[J]. New Phytol, 2009, 182(2): 392-404. |
25 | LI S, ZHOU X, LI H,et al.. Overexpression of ZmIRT1 and ZmZIP3 enhances iron and zinc accumulation in transgenic Arabidopsis [J/OL]. PLoS ONE, 2015, 10(8): e0136647[2024-12-30]. . |
26 | ECKHARDT U, MARQUES AMAS, BUCKHOUT T J. Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants[J]. Plant Mol. Biol., 2001, 45(4): 437-448. |
27 | KLATTE M, SCHULER M, WIRTZ M, et al.. The analysis of Arabidopsis nicotianamine synthase mutants reveals functions for nicotianamine in seed iron loading and iron deficiency responses[J]. Plant Physiol., 2009, 150(1): 257-271. |
28 | SCHULER M, RELLÁN-ÁLVAREZ R, FINK-STRAUBE C, et al.. Nicotianamine functions in the phloem-based transport of iron to sink organs,in pollen development and pollen tube growth in Arabidopsis [J]. Plant Cell, 2012, 24(6): 2380-2400. |
29 | INOUE H, HIGUCHI K, TAKAHASHI M, et al.. Three rice nicotianamine synthase genes,OsNAS1,OsNAS2,and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron[J]. Plant J., 2003, 36(3):366-381. |
30 | ZHOU M L, QI L P, PANG J F, et al.. Nicotianamine synthase gene family as central components in heavy metal and phytohormone response in maize[J]. Funct. Integr. Genom., 2013, 13(2):229-239. |
31 | REGON P, DEY S, CHOWARDHARA B, et al.. Physio-biochemical and molecular assessment of iron (Fe2+) toxicity responses in contrasting indigenous aromatic Joha rice cultivars of Assam, India[J]. Protoplasma, 2021, 258(2): 289-299. |
32 | KAKEI Y, ISHIMARU Y, KOBAYASHI T, et al.. OsYSL16 plays a role in the allocation of iron[J]. Plant Mol. Biol., 2012, 79(6): 583-594. |
33 | BASHIR K, NOZOYE T, NAGASAKA S, et al.. Paralogs and mutants show that one DMA synthase functions in iron homeostasis in rice[J]. J. Exp. Bot., 2017, 68(7): 1785-1795. |
34 | SENOURA T, SAKASHITA E, KOBAYASHI T, et al.. The iron-chelate transporter OsYSL9 plays a role in iron distribution in developing rice grains[J]. Plant Mol. Biol., 2017, 95(4):375-387. |
35 | CHU H H, CHIECKO J, PUNSHON T, et al.. Successful reproduction requires the function of Arabidopsis Yellow Stripe-Like1 and Yellow Stripe-Like3 metal-nicotianamine transporters in both vegetative and reproductive structures[J]. Plant Physiol., 2010, 154(1): 197-210. |
36 | JIA B, GUO G L, Yu T, et al.. Analysis of endogenous IAA content and siganling genes expression in retrieved leaves of ‘dangshansuli’ pear (Pyrus Bretschneideri Rehd)[J]. Acta Bot. Boreali-Occidentalia Sin., 2021, 041(004): 595-605. |
37 | LV X M, ZHANG Y X, HU L, et al.. Low-nitrogen stress stimulates lateral root initiation and nitrogen assimilation in wheat:roles of phytohormone signaling[J]. J.Plant Growth Regul., 2021, 40(1): 436-450. |
38 | ANGULO M, GARCÍA M J, ALCÁNTARA E, et al.. Comparative study of several Fe deficiency responses in the Arabidopsis thaliana ethylene insensitive mutants ein2-1 and ein2-5 [J]. Plants, 2021, 10(2): 262[2024-12-30]. . |
39 | ZANG J, HUO Y, LIU J, et al.. Maize YSL2 is required for iron distribution and development in kernels[J]. J.Exp.Bot., 2020, 71(19): 5896-5910. |
40 | FAN W, WANG H, WU Y, et al.. H+-pyrophosphatase IbVP1 promotes efficient iron use in sweet potato [Ipomoea batatas (L.) Lam.][J]. Plant Biotechnol. J., 2017, 15(6): 698-712. |
41 | 李鑫, 吴元华, 顾晶晶 等.铁诱导烟草抗PVYN的调控作用研究[J]. 沈阳农业大学学报, 2009, 40(1): 11-15. |
LI X, WU Y H, GU J J, et al.. The resistant to PVYN and defensive enzymes of tobacco induced by iron[J]. J. Shenyang Agric. Univ., 2009, 40(1): 11-15. | |
42 | 李晔,吴元华,赵秀香,等.铁营养抑制烟草感染TMV及其对钙信使系统调控作用研究[J]. 植物营养与肥料学报,2007,13(5):920-924. |
LI Y, WU Y H, ZHAO X X, et al.. Studies on the regulation of the inhibition of TMV infection and calcium signaling system with iron nutrient treatment[J]. J. Plant Nutr. Fertil., 2007, 13(5):920-924. | |
43 | MEENA M, SWAPNIL P, DIVYANSHU K, et al.. PGPR-mediated induction of systemic resistance and physiochemical alterations in plants against the pathogens:current perspectives[J]. J. Basic Microbiol., 2020, 60(10): 828-861. |
44 | DJAVAHERI M, MERCADO-BLANCO J, VERSLUIS C, et al.. Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv.tomato in Arabidopsis [J]. MicrobiologyOpen, 2012, 1(3): 311-325. |
45 | PRESS C M, WILSON M, TUZUN S, et al.. Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco[J]. Mol. Plant Microbe In., 2007, 10(6): 761-768. |
46 | DELLAGI A, SEGOND D, RIGAULT M, et al.. Microbial siderophores exert a subtle role in arabidopsis during infection by manipulating the immune response and the iron status[J]. Plant Physiol., 2009, 150(4): 1687-1696. |
47 | DIXON R A, ACHNINE L, KOTA P, et al.. The phenylpropanoid pathway and plant defence-a genomics perspective[J]. Mol. Plant Pathol., 2002, 3(5): 371-390. |
48 | XING Y, XU N, BJANDARI D D, et al.. Bacterial effector targeting of a plant iron sensor facilitates iron acquisition and pathogen colonization[J]. Plant Cell, 2021, 33(6): 2015-2031. |
49 | KIEU NP, AZNAR A, SEGOND D, et al.. Iron deficiency affects plant defence responses and confers resistance to Dickeya dadantii and Botrytis cinerea [J]. Mol. Plant Pathol., 2012, 13(8): 816-827. |
50 | HSIAO P Y, CHENG C P, KOH K W, et al.. The Arabidopsis defensin gene, AtPDF1.1, mediates defence against Pectobacterium carotovorum subsp. carotovorum via an iron-withholding defence system[J/OL]. Sci. Rep., 2017, 7(1): 9175[2024-11-30]. . |
51 | DELLAGI A, RIGAULT M, SEGOND D, et al.. Siderophore- mediated upregulation of Arabidopsis ferritin expression in response to Erwinia chrysanthemi infection[J]. Plant J., 2005, 43(2):262-272. |
52 | LU C K, LIANG G. Fe deficiency-induced ethylene synthesis confers resistance to Botrytis cinerea [J]. New Phytol., 2023, 237(5): 1843-1855. |
53 | PERKOWSKA I, POTRYKUS M, SIWINSKA J, et al.. Interplay between coumarin accumulation, iron deficiency and plant resistance to Dickeya spp.[J/OL]. Int. J. Mol. Sci., 2021, 22(12): 6449[2025-1-10]. . |
54 | LIU G, GREENSHIELDS D L, SAMMYNAIKEN R, et al.. Targeted alterations in iron homeostasis underlie plant defense responses[J]. J. Cell Sci., 2007, 120(Pt 4): 596-605. |
55 | WENNMAN A, OLIW E H, KARKEHABADI S, et al.. Crystal structure of manganese lipoxygenase of the rice blast fungus Magnaporthe oryzae [J]. J. Biol. Chem., 2016, 291(15): 8130-8139. |
56 | SÁNCHEZ-SANUY F, PERIS-PERIS C, TOMIYAMA S, et al.. Osa-miR7695 enhances transcriptional priming in defense responses against the rice blast fungus[J/OL]. BMC Plant Biol., 2019, 19(1): 563[2024-12-30]. . |
57 | CARROLL C S, MOORE M M. Ironing out siderophore biosyn-thesis: a review of non-ribosomal peptide synthetase (nrps)-independent siderophore synthetases[J]. Crit. Rev. Biochem. Mol. Biol., 2018, 53: 356-381. |
58 | OIDE S, MOEDER W, KRASNOFF S, et al.. NPS6, encoding a nonribosomal peptide synthetase involved in siderophore-mediated iron metabolism, is a conserved virulence determinant of plant pathogenic ascomycetes[J]. Plant Cell, 2006, 18(10): 2836-2853. |
59 | ELÍAS, JULIANA M, RAMÍREZ-MATA, et al.. The polar flagellin of Azospirillum brasilense REC3 induces a defense response in strawberry plants against the fungus Macrophomina phaseolina [J]. J. Plant Growth Regul., 2021, 41: 2992-3008. |
60 | EICHHORN H, LESSING F, WINTERBERG B, et al.. A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis [J]. Plant Cell, 2006, 18(11): 3332-3345. |
61 | WANG L, PAN Y, YUAN Z H, et al.. Iron-VgrR binding disassociates VgrR-DNA and VgrR-VgrS interactions[J/OL]. PLoS Pathogens, 2016, 12[2024-12-10]. . |
62 | PAN Y, LIANG F, LI R J, et al.. MarR-family transcription factor HpaR controls expression of the vgrR-vgrS operon of Xanthomonas campestris pv. Campestris [J]. Mol. Plant Microbe Interact., 2018, 31(3): 299-310. |
63 | FRANZA T, EXPERT D. Role of iron homeostasis in the virulence of phytopathogenic bacteria: an ‘à la carte’ menu[J]. Mol. Plant Pathol., 2013, 14(4): 429-438. |
64 | KUZNETS G, VIGONSKY E, WEISSMAN Z, et al.. A relay network of extracellular heme-binding proteins drives C. albicans iron acquisition from hemoglobin[J/OL]. PLoS Pathog., 2014, 10(10): e1004407[2024-12-30]. . |
65 | ALBAROUKI E, DEISING H B. Infection structure-specific reductive iron assimilation is required for cell wall integrity and full virulence of the maize pathogen Colletotrichum graminicola [J]. Mol. Plant Microbe In., 2013, 26(6): 695-708. |
66 | EICHHORN H, LESSING F, WINTERBERG B, et al.. A ferroxidation/permeation iron uptake system is required for virulence in Ustilago maydis [J]. Plant Cell, 2006, 18(11): 3332-3345. |
67 | SHIRAZI F, KONTOYIANNIS D P, IBRAHIM A S. Iron starvation induces apoptosis in rhizopus oryzae in vitro[J]. Virulence, 2015, 6(2): 121-126. |
68 | LI Y Y, SUI X Y, YANG J S, et al.. A novel bHLH transcription factor, NtbHLH1, modulates iron homeostasis in tobacco (Nicotiana tabacum L.)[J]. Biochem. Biophys. Res. Commun., 2020, 522(1): 233-239. |
69 | YAO Z, HAO W, WANG Y, et al.. Loss-of-function mutations in the ERF96 gene enhance iron-deficient tolerance in Arabidopsis [J]. Plant Physiol. Biochem., 2022, 175: 1-11. |
70 | CAMPO S, PERIS-PERIS C, SIRÉ C, et al.. Identification of a novel microRNA (miRNA) from rice that targets an alternatively spliced transcript of the Nramp6 (Natural resistance-associated macrophage protein 6) gene involved in pathogen resistance[J]. New Phytol., 2013, 199(1): 212-227. |
71 | YE F, ALBAROUKI E, LINGAM B, et al.. An adequate Fe nutritional status of maize suppresses infection and biotrophic growth of Colletotrichum graminicola [J]. Physiol. Plantarum., 2014, 151 (3): 280-292. |
72 | DANGOL S, CHEN Y, HWANG B K, et al.. Iron-and reactive oxygen species-dependent ferroptotic cell death in rice-Magnaporthe oryzae interactions[J]. Plant Cell, 2019, 31(1): 189-209. |
73 | AZNAR A, PATRIT O, BERGER A, et al.. Alterations of iron distribution in Arabidopsis tissues infected by Dickeya dadantii [J]. Mol. Plant Pathol., 2014, 16(5): 521-528. |
[1] | 张明娇, 朱杰夫, 吴雄飞. 顺铂诱导的肾损伤中的细胞死亡[J]. 生物技术进展, 2023, 13(5): 718-724. |
[2] | 张晓旭, 肖向茜, 潘逸群, 顾烨翔, 董礼, 党浩然, 康茜, 王明连. 烯壳铁氮磁珠介导Survivin ASO对肿瘤细胞的转染和抑制作用[J]. 生物技术进展, 2023, 13(5): 785-797. |
[3] | 马文博, 潘逸群, 王群, 马壮, 王明连, 杨怡姝. 烯壳氮化铁纳米磁珠用于捕获肺癌循环肿瘤细胞的初步研究[J]. 生物技术进展, 2023, 13(4): 628-636. |
[4] | 王珍, 黄克让, 陈蕾, 周敏, 薛元夏. 应用高压冷冻-冷冻替代技术研究Erastin对颗粒细胞超微结构的影响[J]. 生物技术进展, 2023, 13(4): 637-644. |
[5] | 王彦容, 郭元彪. 基于铁死亡相关LncRNA构建肝细胞癌预后模型的研究[J]. 生物技术进展, 2023, 13(3): 473-481. |
[6] | 曹静钰, 刘承梅, 祁晨旭, 杜开颜, 陈蒙, 侯思伟. Nrf2在脊髓损伤后铁死亡的研究进展[J]. 生物技术进展, 2023, 13(2): 240-246. |
[7] | 杜开颜, 祁晨旭, 曹静钰, 陈蒙, 高静, 刘承梅. 铁死亡参与脊髓损伤调控的研究进展[J]. 生物技术进展, 2022, 12(6): 869-874. |
[8] | 刘一超, 陆超, 战嵛华, 柯秀彬, 陆伟, 燕永亮. 施氏假单胞菌A1501铁吸收调节蛋白Fur的表达特性与功能鉴定[J]. 生物技术进展, 2022, 12(3): 387-395. |
[9] | 丁宁, 许叶, 曾玮思, 胡彦周, 洪凌宇, 黄昆仑, 贺晓云. 重组人乳铁蛋白和重组人溶菌酶对小鼠溃疡性结肠炎的改善作用研究[J]. 生物技术进展, 2022, 12(1): 120-128. |
[10] | 金童, 陈铖. 铁死亡与肾脏疾病相关性的研究进展[J]. 生物技术进展, 2022, 12(1): 68-74. |
[11] | 董杰,张昊,张芃芃. 集胞藻PCC 6803类铁氧还蛋白Slr1205的功能研究[J]. 生物技术进展, 2021, 11(1): 69-78. |
[12] | 杜梦潭,张伟业,刘兴健,李轶女,张志芳,胡小元. 铁蛋白与法氏囊病毒核衣壳蛋白重组蛋白的原核表达及纳米颗粒胞外自组装[J]. 生物技术进展, 2020, 10(4): 378-385. |
[13] | 魏珍珍,曾振,杜梦潭,刘兴健,张志芳,胡小元,李轶女,易咏竹. 融合铁蛋白的猪瘟病毒囊膜蛋白E2的表达及鉴定[J]. 生物技术进展, 2020, 10(4): 386-392. |
[14] | 马艺戈,王冰蕊,高洁,刘金花,佟静媛,刘丽君,石莉红. 氯化高铁血红素诱导K562细胞红系分化对其细胞周期的影响[J]. 生物技术进展, 2020, 10(4): 409-416. |
[15] | 席圆圆,徐宏彦,刘霞,尹慧青,刘晓盼,王庆路,王清路. 铁观音茶水提物对小鼠高尿酸血症的缓解作用[J]. 生物技术进展, 2020, 10(3): 256-264. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《生物技术进展》编辑部